Mister Exam

Other calculators


3*sin(tan(5*x+pi))

Derivative of 3*sin(tan(5*x+pi))

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
3*sin(tan(5*x + pi))
3sin(tan(5x+π))3 \sin{\left(\tan{\left(5 x + \pi \right)} \right)}
3*sin(tan(5*x + pi))
Detail solution
  1. The derivative of a constant times a function is the constant times the derivative of the function.

    1. Let u=tan(5x+π)u = \tan{\left(5 x + \pi \right)}.

    2. The derivative of sine is cosine:

      ddusin(u)=cos(u)\frac{d}{d u} \sin{\left(u \right)} = \cos{\left(u \right)}

    3. Then, apply the chain rule. Multiply by ddxtan(5x+π)\frac{d}{d x} \tan{\left(5 x + \pi \right)}:

      1. Rewrite the function to be differentiated:

        tan(5x+π)=sin(5x)cos(5x)\tan{\left(5 x + \pi \right)} = \frac{\sin{\left(5 x \right)}}{\cos{\left(5 x \right)}}

      2. Apply the quotient rule, which is:

        ddxf(x)g(x)=f(x)ddxg(x)+g(x)ddxf(x)g2(x)\frac{d}{d x} \frac{f{\left(x \right)}}{g{\left(x \right)}} = \frac{- f{\left(x \right)} \frac{d}{d x} g{\left(x \right)} + g{\left(x \right)} \frac{d}{d x} f{\left(x \right)}}{g^{2}{\left(x \right)}}

        f(x)=sin(5x)f{\left(x \right)} = \sin{\left(5 x \right)} and g(x)=cos(5x)g{\left(x \right)} = \cos{\left(5 x \right)}.

        To find ddxf(x)\frac{d}{d x} f{\left(x \right)}:

        1. Let u=5xu = 5 x.

        2. The derivative of sine is cosine:

          ddusin(u)=cos(u)\frac{d}{d u} \sin{\left(u \right)} = \cos{\left(u \right)}

        3. Then, apply the chain rule. Multiply by ddx5x\frac{d}{d x} 5 x:

          1. The derivative of a constant times a function is the constant times the derivative of the function.

            1. Apply the power rule: xx goes to 11

            So, the result is: 55

          The result of the chain rule is:

          5cos(5x)5 \cos{\left(5 x \right)}

        To find ddxg(x)\frac{d}{d x} g{\left(x \right)}:

        1. Let u=5xu = 5 x.

        2. The derivative of cosine is negative sine:

          dducos(u)=sin(u)\frac{d}{d u} \cos{\left(u \right)} = - \sin{\left(u \right)}

        3. Then, apply the chain rule. Multiply by ddx5x\frac{d}{d x} 5 x:

          1. The derivative of a constant times a function is the constant times the derivative of the function.

            1. Apply the power rule: xx goes to 11

            So, the result is: 55

          The result of the chain rule is:

          5sin(5x)- 5 \sin{\left(5 x \right)}

        Now plug in to the quotient rule:

        5sin2(5x)+5cos2(5x)cos2(5x)\frac{5 \sin^{2}{\left(5 x \right)} + 5 \cos^{2}{\left(5 x \right)}}{\cos^{2}{\left(5 x \right)}}

      The result of the chain rule is:

      (5sin2(5x)+5cos2(5x))cos(tan(5x+π))cos2(5x)\frac{\left(5 \sin^{2}{\left(5 x \right)} + 5 \cos^{2}{\left(5 x \right)}\right) \cos{\left(\tan{\left(5 x + \pi \right)} \right)}}{\cos^{2}{\left(5 x \right)}}

    So, the result is: 3(5sin2(5x)+5cos2(5x))cos(tan(5x+π))cos2(5x)\frac{3 \left(5 \sin^{2}{\left(5 x \right)} + 5 \cos^{2}{\left(5 x \right)}\right) \cos{\left(\tan{\left(5 x + \pi \right)} \right)}}{\cos^{2}{\left(5 x \right)}}

  2. Now simplify:

    15cos(tan(5x))cos2(5x)\frac{15 \cos{\left(\tan{\left(5 x \right)} \right)}}{\cos^{2}{\left(5 x \right)}}


The answer is:

15cos(tan(5x))cos2(5x)\frac{15 \cos{\left(\tan{\left(5 x \right)} \right)}}{\cos^{2}{\left(5 x \right)}}

The graph
02468-8-6-4-2-1010-1000010000
The first derivative [src]
  /         2          \                   
3*\5 + 5*tan (5*x + pi)/*cos(tan(5*x + pi))
3(5tan2(5x+π)+5)cos(tan(5x+π))3 \left(5 \tan^{2}{\left(5 x + \pi \right)} + 5\right) \cos{\left(\tan{\left(5 x + \pi \right)} \right)}
The second derivative [src]
    /       2     \ //       2     \                                         \
-75*\1 + tan (5*x)/*\\1 + tan (5*x)/*sin(tan(5*x)) - 2*cos(tan(5*x))*tan(5*x)/
75((tan2(5x)+1)sin(tan(5x))2cos(tan(5x))tan(5x))(tan2(5x)+1)- 75 \left(\left(\tan^{2}{\left(5 x \right)} + 1\right) \sin{\left(\tan{\left(5 x \right)} \right)} - 2 \cos{\left(\tan{\left(5 x \right)} \right)} \tan{\left(5 x \right)}\right) \left(\tan^{2}{\left(5 x \right)} + 1\right)
The third derivative [src]
                     /               2                                                                                                                       \
     /       2     \ |/       2     \                       2                        /       2     \                   /       2     \                       |
-375*\1 + tan (5*x)/*\\1 + tan (5*x)/ *cos(tan(5*x)) - 4*tan (5*x)*cos(tan(5*x)) - 2*\1 + tan (5*x)/*cos(tan(5*x)) + 6*\1 + tan (5*x)/*sin(tan(5*x))*tan(5*x)/
375(tan2(5x)+1)((tan2(5x)+1)2cos(tan(5x))+6(tan2(5x)+1)sin(tan(5x))tan(5x)2(tan2(5x)+1)cos(tan(5x))4cos(tan(5x))tan2(5x))- 375 \left(\tan^{2}{\left(5 x \right)} + 1\right) \left(\left(\tan^{2}{\left(5 x \right)} + 1\right)^{2} \cos{\left(\tan{\left(5 x \right)} \right)} + 6 \left(\tan^{2}{\left(5 x \right)} + 1\right) \sin{\left(\tan{\left(5 x \right)} \right)} \tan{\left(5 x \right)} - 2 \left(\tan^{2}{\left(5 x \right)} + 1\right) \cos{\left(\tan{\left(5 x \right)} \right)} - 4 \cos{\left(\tan{\left(5 x \right)} \right)} \tan^{2}{\left(5 x \right)}\right)
The graph
Derivative of 3*sin(tan(5*x+pi))