Mister Exam

Other calculators


3*sin(tan(5*x+pi))

Derivative of 3*sin(tan(5*x+pi))

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
3*sin(tan(5*x + pi))
$$3 \sin{\left(\tan{\left(5 x + \pi \right)} \right)}$$
3*sin(tan(5*x + pi))
Detail solution
  1. The derivative of a constant times a function is the constant times the derivative of the function.

    1. Let .

    2. The derivative of sine is cosine:

    3. Then, apply the chain rule. Multiply by :

      1. Rewrite the function to be differentiated:

      2. Apply the quotient rule, which is:

        and .

        To find :

        1. Let .

        2. The derivative of sine is cosine:

        3. Then, apply the chain rule. Multiply by :

          1. The derivative of a constant times a function is the constant times the derivative of the function.

            1. Apply the power rule: goes to

            So, the result is:

          The result of the chain rule is:

        To find :

        1. Let .

        2. The derivative of cosine is negative sine:

        3. Then, apply the chain rule. Multiply by :

          1. The derivative of a constant times a function is the constant times the derivative of the function.

            1. Apply the power rule: goes to

            So, the result is:

          The result of the chain rule is:

        Now plug in to the quotient rule:

      The result of the chain rule is:

    So, the result is:

  2. Now simplify:


The answer is:

The graph
The first derivative [src]
  /         2          \                   
3*\5 + 5*tan (5*x + pi)/*cos(tan(5*x + pi))
$$3 \left(5 \tan^{2}{\left(5 x + \pi \right)} + 5\right) \cos{\left(\tan{\left(5 x + \pi \right)} \right)}$$
The second derivative [src]
    /       2     \ //       2     \                                         \
-75*\1 + tan (5*x)/*\\1 + tan (5*x)/*sin(tan(5*x)) - 2*cos(tan(5*x))*tan(5*x)/
$$- 75 \left(\left(\tan^{2}{\left(5 x \right)} + 1\right) \sin{\left(\tan{\left(5 x \right)} \right)} - 2 \cos{\left(\tan{\left(5 x \right)} \right)} \tan{\left(5 x \right)}\right) \left(\tan^{2}{\left(5 x \right)} + 1\right)$$
The third derivative [src]
                     /               2                                                                                                                       \
     /       2     \ |/       2     \                       2                        /       2     \                   /       2     \                       |
-375*\1 + tan (5*x)/*\\1 + tan (5*x)/ *cos(tan(5*x)) - 4*tan (5*x)*cos(tan(5*x)) - 2*\1 + tan (5*x)/*cos(tan(5*x)) + 6*\1 + tan (5*x)/*sin(tan(5*x))*tan(5*x)/
$$- 375 \left(\tan^{2}{\left(5 x \right)} + 1\right) \left(\left(\tan^{2}{\left(5 x \right)} + 1\right)^{2} \cos{\left(\tan{\left(5 x \right)} \right)} + 6 \left(\tan^{2}{\left(5 x \right)} + 1\right) \sin{\left(\tan{\left(5 x \right)} \right)} \tan{\left(5 x \right)} - 2 \left(\tan^{2}{\left(5 x \right)} + 1\right) \cos{\left(\tan{\left(5 x \right)} \right)} - 4 \cos{\left(\tan{\left(5 x \right)} \right)} \tan^{2}{\left(5 x \right)}\right)$$
The graph
Derivative of 3*sin(tan(5*x+pi))