Mister Exam

Other calculators

Derivative of 3*log(2x-5,4)^7

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
     7            
3*log (2*x - 27/5)
3log(2x275)73 \log{\left(2 x - \frac{27}{5} \right)}^{7}
3*log(2*x - 27/5)^7
Detail solution
  1. The derivative of a constant times a function is the constant times the derivative of the function.

    1. Let u=log(2x275)u = \log{\left(2 x - \frac{27}{5} \right)}.

    2. Apply the power rule: u7u^{7} goes to 7u67 u^{6}

    3. Then, apply the chain rule. Multiply by ddxlog(2x275)\frac{d}{d x} \log{\left(2 x - \frac{27}{5} \right)}:

      1. Let u=2x275u = 2 x - \frac{27}{5}.

      2. The derivative of log(u)\log{\left(u \right)} is 1u\frac{1}{u}.

      3. Then, apply the chain rule. Multiply by ddx(2x275)\frac{d}{d x} \left(2 x - \frac{27}{5}\right):

        1. Differentiate 2x2752 x - \frac{27}{5} term by term:

          1. The derivative of a constant times a function is the constant times the derivative of the function.

            1. Apply the power rule: xx goes to 11

            So, the result is: 22

          2. The derivative of the constant 275- \frac{27}{5} is zero.

          The result is: 22

        The result of the chain rule is:

        22x275\frac{2}{2 x - \frac{27}{5}}

      The result of the chain rule is:

      14log(2x275)62x275\frac{14 \log{\left(2 x - \frac{27}{5} \right)}^{6}}{2 x - \frac{27}{5}}

    So, the result is: 42log(2x275)62x275\frac{42 \log{\left(2 x - \frac{27}{5} \right)}^{6}}{2 x - \frac{27}{5}}

  2. Now simplify:

    210log(2x275)610x27\frac{210 \log{\left(2 x - \frac{27}{5} \right)}^{6}}{10 x - 27}


The answer is:

210log(2x275)610x27\frac{210 \log{\left(2 x - \frac{27}{5} \right)}^{6}}{10 x - 27}

The graph
02468-8-6-4-2-1010-500000500000
The first derivative [src]
      6            
42*log (2*x - 27/5)
-------------------
     2*x - 27/5    
42log(2x275)62x275\frac{42 \log{\left(2 x - \frac{27}{5} \right)}^{6}}{2 x - \frac{27}{5}}
The second derivative [src]
         5                                     
-2100*log (-27/5 + 2*x)*(-6 + log(-27/5 + 2*x))
-----------------------------------------------
                             2                 
                 (-27 + 10*x)                  
2100(log(2x275)6)log(2x275)5(10x27)2- \frac{2100 \left(\log{\left(2 x - \frac{27}{5} \right)} - 6\right) \log{\left(2 x - \frac{27}{5} \right)}^{5}}{\left(10 x - 27\right)^{2}}
The third derivative [src]
         4              /        2                                  \
42000*log (-27/5 + 2*x)*\15 + log (-27/5 + 2*x) - 9*log(-27/5 + 2*x)/
---------------------------------------------------------------------
                                        3                            
                            (-27 + 10*x)                             
42000(log(2x275)29log(2x275)+15)log(2x275)4(10x27)3\frac{42000 \left(\log{\left(2 x - \frac{27}{5} \right)}^{2} - 9 \log{\left(2 x - \frac{27}{5} \right)} + 15\right) \log{\left(2 x - \frac{27}{5} \right)}^{4}}{\left(10 x - 27\right)^{3}}