Mister Exam

Other calculators

Derivative of 3*(cos(t)+(t)*sin(t))

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
3*(cos(t) + t*sin(t))
3(tsin(t)+cos(t))3 \left(t \sin{\left(t \right)} + \cos{\left(t \right)}\right)
3*(cos(t) + t*sin(t))
Detail solution
  1. The derivative of a constant times a function is the constant times the derivative of the function.

    1. Differentiate tsin(t)+cos(t)t \sin{\left(t \right)} + \cos{\left(t \right)} term by term:

      1. The derivative of cosine is negative sine:

        ddtcos(t)=sin(t)\frac{d}{d t} \cos{\left(t \right)} = - \sin{\left(t \right)}

      2. Apply the product rule:

        ddtf(t)g(t)=f(t)ddtg(t)+g(t)ddtf(t)\frac{d}{d t} f{\left(t \right)} g{\left(t \right)} = f{\left(t \right)} \frac{d}{d t} g{\left(t \right)} + g{\left(t \right)} \frac{d}{d t} f{\left(t \right)}

        f(t)=tf{\left(t \right)} = t; to find ddtf(t)\frac{d}{d t} f{\left(t \right)}:

        1. Apply the power rule: tt goes to 11

        g(t)=sin(t)g{\left(t \right)} = \sin{\left(t \right)}; to find ddtg(t)\frac{d}{d t} g{\left(t \right)}:

        1. The derivative of sine is cosine:

          ddtsin(t)=cos(t)\frac{d}{d t} \sin{\left(t \right)} = \cos{\left(t \right)}

        The result is: tcos(t)+sin(t)t \cos{\left(t \right)} + \sin{\left(t \right)}

      The result is: tcos(t)t \cos{\left(t \right)}

    So, the result is: 3tcos(t)3 t \cos{\left(t \right)}


The answer is:

3tcos(t)3 t \cos{\left(t \right)}

The graph
02468-8-6-4-2-1010-5050
The first derivative [src]
3*t*cos(t)
3tcos(t)3 t \cos{\left(t \right)}
The second derivative [src]
3*(-t*sin(t) + cos(t))
3(tsin(t)+cos(t))3 \left(- t \sin{\left(t \right)} + \cos{\left(t \right)}\right)
The third derivative [src]
-3*(2*sin(t) + t*cos(t))
3(tcos(t)+2sin(t))- 3 \left(t \cos{\left(t \right)} + 2 \sin{\left(t \right)}\right)