Mister Exam

Derivative of 3√ln(cos(4x+5))

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
    ___________________
3*\/ log(cos(4*x + 5)) 
$$3 \sqrt{\log{\left(\cos{\left(4 x + 5 \right)} \right)}}$$
3*sqrt(log(cos(4*x + 5)))
Detail solution
  1. The derivative of a constant times a function is the constant times the derivative of the function.

    1. Let .

    2. Apply the power rule: goes to

    3. Then, apply the chain rule. Multiply by :

      1. Let .

      2. The derivative of is .

      3. Then, apply the chain rule. Multiply by :

        1. Let .

        2. The derivative of cosine is negative sine:

        3. Then, apply the chain rule. Multiply by :

          1. Differentiate term by term:

            1. The derivative of a constant times a function is the constant times the derivative of the function.

              1. Apply the power rule: goes to

              So, the result is:

            2. The derivative of the constant is zero.

            The result is:

          The result of the chain rule is:

        The result of the chain rule is:

      The result of the chain rule is:

    So, the result is:

  2. Now simplify:


The answer is:

The graph
The first derivative [src]
         -6*sin(4*x + 5)          
----------------------------------
               ___________________
cos(4*x + 5)*\/ log(cos(4*x + 5)) 
$$- \frac{6 \sin{\left(4 x + 5 \right)}}{\sqrt{\log{\left(\cos{\left(4 x + 5 \right)} \right)}} \cos{\left(4 x + 5 \right)}}$$
The second derivative [src]
    /         2                        2                  \
    |    2*sin (5 + 4*x)            sin (5 + 4*x)         |
-12*|2 + --------------- + -------------------------------|
    |        2                2                           |
    \     cos (5 + 4*x)    cos (5 + 4*x)*log(cos(5 + 4*x))/
-----------------------------------------------------------
                     ___________________                   
                   \/ log(cos(5 + 4*x))                    
$$- \frac{12 \left(\frac{2 \sin^{2}{\left(4 x + 5 \right)}}{\cos^{2}{\left(4 x + 5 \right)}} + 2 + \frac{\sin^{2}{\left(4 x + 5 \right)}}{\log{\left(\cos{\left(4 x + 5 \right)} \right)} \cos^{2}{\left(4 x + 5 \right)}}\right)}{\sqrt{\log{\left(\cos{\left(4 x + 5 \right)} \right)}}}$$
The third derivative [src]
    /                             2                         2                                  2                 \             
    |            6           8*sin (5 + 4*x)           3*sin (5 + 4*x)                    6*sin (5 + 4*x)        |             
-24*|8 + ----------------- + --------------- + -------------------------------- + -------------------------------|*sin(5 + 4*x)
    |    log(cos(5 + 4*x))       2                2             2                    2                           |             
    \                         cos (5 + 4*x)    cos (5 + 4*x)*log (cos(5 + 4*x))   cos (5 + 4*x)*log(cos(5 + 4*x))/             
-------------------------------------------------------------------------------------------------------------------------------
                                                              ___________________                                              
                                               cos(5 + 4*x)*\/ log(cos(5 + 4*x))                                               
$$- \frac{24 \left(\frac{8 \sin^{2}{\left(4 x + 5 \right)}}{\cos^{2}{\left(4 x + 5 \right)}} + 8 + \frac{6 \sin^{2}{\left(4 x + 5 \right)}}{\log{\left(\cos{\left(4 x + 5 \right)} \right)} \cos^{2}{\left(4 x + 5 \right)}} + \frac{6}{\log{\left(\cos{\left(4 x + 5 \right)} \right)}} + \frac{3 \sin^{2}{\left(4 x + 5 \right)}}{\log{\left(\cos{\left(4 x + 5 \right)} \right)}^{2} \cos^{2}{\left(4 x + 5 \right)}}\right) \sin{\left(4 x + 5 \right)}}{\sqrt{\log{\left(\cos{\left(4 x + 5 \right)} \right)}} \cos{\left(4 x + 5 \right)}}$$