___________________ 3*\/ log(cos(4*x + 5))
3*sqrt(log(cos(4*x + 5)))
The derivative of a constant times a function is the constant times the derivative of the function.
Let .
Apply the power rule: goes to
Then, apply the chain rule. Multiply by :
Let .
The derivative of is .
Then, apply the chain rule. Multiply by :
Let .
The derivative of cosine is negative sine:
Then, apply the chain rule. Multiply by :
Differentiate term by term:
The derivative of a constant times a function is the constant times the derivative of the function.
Apply the power rule: goes to
So, the result is:
The derivative of the constant is zero.
The result is:
The result of the chain rule is:
The result of the chain rule is:
The result of the chain rule is:
So, the result is:
Now simplify:
The answer is:
-6*sin(4*x + 5) ---------------------------------- ___________________ cos(4*x + 5)*\/ log(cos(4*x + 5))
/ 2 2 \ | 2*sin (5 + 4*x) sin (5 + 4*x) | -12*|2 + --------------- + -------------------------------| | 2 2 | \ cos (5 + 4*x) cos (5 + 4*x)*log(cos(5 + 4*x))/ ----------------------------------------------------------- ___________________ \/ log(cos(5 + 4*x))
/ 2 2 2 \ | 6 8*sin (5 + 4*x) 3*sin (5 + 4*x) 6*sin (5 + 4*x) | -24*|8 + ----------------- + --------------- + -------------------------------- + -------------------------------|*sin(5 + 4*x) | log(cos(5 + 4*x)) 2 2 2 2 | \ cos (5 + 4*x) cos (5 + 4*x)*log (cos(5 + 4*x)) cos (5 + 4*x)*log(cos(5 + 4*x))/ ------------------------------------------------------------------------------------------------------------------------------- ___________________ cos(5 + 4*x)*\/ log(cos(5 + 4*x))