Mister Exam

Other calculators

Derivative of 3/x-3-2sin(x-1)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
3                   
- - 3 - 2*sin(x - 1)
x                   
(3+3x)2sin(x1)\left(-3 + \frac{3}{x}\right) - 2 \sin{\left(x - 1 \right)}
3/x - 3 - 2*sin(x - 1)
Detail solution
  1. Differentiate (3+3x)2sin(x1)\left(-3 + \frac{3}{x}\right) - 2 \sin{\left(x - 1 \right)} term by term:

    1. Differentiate 3+3x-3 + \frac{3}{x} term by term:

      1. The derivative of a constant times a function is the constant times the derivative of the function.

        1. Apply the power rule: 1x\frac{1}{x} goes to 1x2- \frac{1}{x^{2}}

        So, the result is: 3x2- \frac{3}{x^{2}}

      2. The derivative of the constant 3-3 is zero.

      The result is: 3x2- \frac{3}{x^{2}}

    2. The derivative of a constant times a function is the constant times the derivative of the function.

      1. Let u=x1u = x - 1.

      2. The derivative of sine is cosine:

        ddusin(u)=cos(u)\frac{d}{d u} \sin{\left(u \right)} = \cos{\left(u \right)}

      3. Then, apply the chain rule. Multiply by ddx(x1)\frac{d}{d x} \left(x - 1\right):

        1. Differentiate x1x - 1 term by term:

          1. Apply the power rule: xx goes to 11

          2. The derivative of the constant 1-1 is zero.

          The result is: 11

        The result of the chain rule is:

        cos(x1)\cos{\left(x - 1 \right)}

      So, the result is: 2cos(x1)- 2 \cos{\left(x - 1 \right)}

    The result is: 2cos(x1)3x2- 2 \cos{\left(x - 1 \right)} - \frac{3}{x^{2}}

  2. Now simplify:

    2cos(x1)3x2- 2 \cos{\left(x - 1 \right)} - \frac{3}{x^{2}}


The answer is:

2cos(x1)3x2- 2 \cos{\left(x - 1 \right)} - \frac{3}{x^{2}}

The graph
02468-8-6-4-2-1010-500500
The first derivative [src]
  3                
- -- - 2*cos(x - 1)
   2               
  x                
2cos(x1)3x2- 2 \cos{\left(x - 1 \right)} - \frac{3}{x^{2}}
The second derivative [src]
  /3               \
2*|-- + sin(-1 + x)|
  | 3              |
  \x               /
2(sin(x1)+3x3)2 \left(\sin{\left(x - 1 \right)} + \frac{3}{x^{3}}\right)
The third derivative [src]
  /  9               \
2*|- -- + cos(-1 + x)|
  |   4              |
  \  x               /
2(cos(x1)9x4)2 \left(\cos{\left(x - 1 \right)} - \frac{9}{x^{4}}\right)