3 ----------------- 2*sin(x) - cos(x)
3/(2*sin(x) - cos(x))
The derivative of a constant times a function is the constant times the derivative of the function.
Let .
Apply the power rule: goes to
Then, apply the chain rule. Multiply by :
Differentiate term by term:
The derivative of a constant times a function is the constant times the derivative of the function.
The derivative of sine is cosine:
So, the result is:
The derivative of a constant times a function is the constant times the derivative of the function.
The derivative of cosine is negative sine:
So, the result is:
The result is:
The result of the chain rule is:
So, the result is:
Now simplify:
The answer is:
3*(-sin(x) - 2*cos(x)) ---------------------- 2 (2*sin(x) - cos(x))
/ 2\ | 2*(2*cos(x) + sin(x)) | 3*|1 + ----------------------| | 2 | \ (-cos(x) + 2*sin(x)) / ------------------------------ -cos(x) + 2*sin(x)
/ 2\ | 6*(2*cos(x) + sin(x)) | -3*|5 + ----------------------|*(2*cos(x) + sin(x)) | 2 | \ (-cos(x) + 2*sin(x)) / --------------------------------------------------- 2 (-cos(x) + 2*sin(x))