Mister Exam

Other calculators

Derivative of 3/(2sinx-cosx)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
        3        
-----------------
2*sin(x) - cos(x)
$$\frac{3}{2 \sin{\left(x \right)} - \cos{\left(x \right)}}$$
3/(2*sin(x) - cos(x))
Detail solution
  1. The derivative of a constant times a function is the constant times the derivative of the function.

    1. Let .

    2. Apply the power rule: goes to

    3. Then, apply the chain rule. Multiply by :

      1. Differentiate term by term:

        1. The derivative of a constant times a function is the constant times the derivative of the function.

          1. The derivative of sine is cosine:

          So, the result is:

        2. The derivative of a constant times a function is the constant times the derivative of the function.

          1. The derivative of cosine is negative sine:

          So, the result is:

        The result is:

      The result of the chain rule is:

    So, the result is:

  2. Now simplify:


The answer is:

The graph
The first derivative [src]
3*(-sin(x) - 2*cos(x))
----------------------
                    2 
 (2*sin(x) - cos(x))  
$$\frac{3 \left(- \sin{\left(x \right)} - 2 \cos{\left(x \right)}\right)}{\left(2 \sin{\left(x \right)} - \cos{\left(x \right)}\right)^{2}}$$
The second derivative [src]
  /                         2\
  |    2*(2*cos(x) + sin(x)) |
3*|1 + ----------------------|
  |                        2 |
  \    (-cos(x) + 2*sin(x))  /
------------------------------
      -cos(x) + 2*sin(x)      
$$\frac{3 \left(\frac{2 \left(\sin{\left(x \right)} + 2 \cos{\left(x \right)}\right)^{2}}{\left(2 \sin{\left(x \right)} - \cos{\left(x \right)}\right)^{2}} + 1\right)}{2 \sin{\left(x \right)} - \cos{\left(x \right)}}$$
The third derivative [src]
   /                         2\                    
   |    6*(2*cos(x) + sin(x)) |                    
-3*|5 + ----------------------|*(2*cos(x) + sin(x))
   |                        2 |                    
   \    (-cos(x) + 2*sin(x))  /                    
---------------------------------------------------
                                   2               
               (-cos(x) + 2*sin(x))                
$$- \frac{3 \left(\frac{6 \left(\sin{\left(x \right)} + 2 \cos{\left(x \right)}\right)^{2}}{\left(2 \sin{\left(x \right)} - \cos{\left(x \right)}\right)^{2}} + 5\right) \left(\sin{\left(x \right)} + 2 \cos{\left(x \right)}\right)}{\left(2 \sin{\left(x \right)} - \cos{\left(x \right)}\right)^{2}}$$