Mister Exam

Other calculators


th(x)/ch^2(x)

Derivative of th(x)/ch^2(x)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
tanh(x) 
--------
    2   
cosh (x)
$$\frac{\tanh{\left(x \right)}}{\cosh^{2}{\left(x \right)}}$$
d /tanh(x) \
--|--------|
dx|    2   |
  \cosh (x)/
$$\frac{d}{d x} \frac{\tanh{\left(x \right)}}{\cosh^{2}{\left(x \right)}}$$
The graph
The first derivative [src]
        2                       
1 - tanh (x)   2*sinh(x)*tanh(x)
------------ - -----------------
      2                 3       
  cosh (x)          cosh (x)    
$$\frac{1 - \tanh^{2}{\left(x \right)}}{\cosh^{2}{\left(x \right)}} - \frac{2 \sinh{\left(x \right)} \tanh{\left(x \right)}}{\cosh^{3}{\left(x \right)}}$$
The second derivative [src]
  /                          /           2   \             /         2   \        \
  |/         2   \           |     3*sinh (x)|           2*\-1 + tanh (x)/*sinh(x)|
2*|\-1 + tanh (x)/*tanh(x) + |-1 + ----------|*tanh(x) + -------------------------|
  |                          |          2    |                    cosh(x)         |
  \                          \      cosh (x) /                                    /
-----------------------------------------------------------------------------------
                                          2                                        
                                      cosh (x)                                     
$$\frac{2 \left(\left(\frac{3 \sinh^{2}{\left(x \right)}}{\cosh^{2}{\left(x \right)}} - 1\right) \tanh{\left(x \right)} + \frac{2 \left(\tanh^{2}{\left(x \right)} - 1\right) \sinh{\left(x \right)}}{\cosh{\left(x \right)}} + \left(\tanh^{2}{\left(x \right)} - 1\right) \tanh{\left(x \right)}\right)}{\cosh^{2}{\left(x \right)}}$$
The third derivative [src]
   /                                                                            /           2   \                                                    \
   |                                                                            |     3*sinh (x)|                                                    |
   |                                                                          4*|-2 + ----------|*sinh(x)*tanh(x)                                    |
   |                                                      /           2   \     |          2    |                     /         2   \                |
   |/         2   \ /           2   \     /         2   \ |     3*sinh (x)|     \      cosh (x) /                   6*\-1 + tanh (x)/*sinh(x)*tanh(x)|
-2*|\-1 + tanh (x)/*\-1 + 3*tanh (x)/ + 3*\-1 + tanh (x)/*|-1 + ----------| + ----------------------------------- + ---------------------------------|
   |                                                      |          2    |                 cosh(x)                              cosh(x)             |
   \                                                      \      cosh (x) /                                                                          /
------------------------------------------------------------------------------------------------------------------------------------------------------
                                                                           2                                                                          
                                                                       cosh (x)                                                                       
$$- \frac{2 \cdot \left(\frac{4 \cdot \left(\frac{3 \sinh^{2}{\left(x \right)}}{\cosh^{2}{\left(x \right)}} - 2\right) \sinh{\left(x \right)} \tanh{\left(x \right)}}{\cosh{\left(x \right)}} + 3 \cdot \left(\frac{3 \sinh^{2}{\left(x \right)}}{\cosh^{2}{\left(x \right)}} - 1\right) \left(\tanh^{2}{\left(x \right)} - 1\right) + \left(\tanh^{2}{\left(x \right)} - 1\right) \left(3 \tanh^{2}{\left(x \right)} - 1\right) + \frac{6 \left(\tanh^{2}{\left(x \right)} - 1\right) \sinh{\left(x \right)} \tanh{\left(x \right)}}{\cosh{\left(x \right)}}\right)}{\cosh^{2}{\left(x \right)}}$$
The graph
Derivative of th(x)/ch^2(x)