Mister Exam

Derivative of tgx-(1/tgx)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
           1   
tan(x) - ------
         tan(x)
$$\tan{\left(x \right)} - \frac{1}{\tan{\left(x \right)}}$$
tan(x) - 1/tan(x)
Detail solution
  1. Differentiate term by term:

    1. Rewrite the function to be differentiated:

    2. Apply the quotient rule, which is:

      and .

      To find :

      1. The derivative of sine is cosine:

      To find :

      1. The derivative of cosine is negative sine:

      Now plug in to the quotient rule:

    3. The derivative of a constant times a function is the constant times the derivative of the function.

      1. Let .

      2. Apply the power rule: goes to

      3. Then, apply the chain rule. Multiply by :

        The result of the chain rule is:

      So, the result is:

    The result is:

  2. Now simplify:


The answer is:

The graph
The first derivative [src]
                      2   
       2      -1 - tan (x)
1 + tan (x) - ------------
                   2      
                tan (x)   
$$- \frac{- \tan^{2}{\left(x \right)} - 1}{\tan^{2}{\left(x \right)}} + \tan^{2}{\left(x \right)} + 1$$
The second derivative [src]
                /                2            \
  /       2   \ |  1      1 + tan (x)         |
2*\1 + tan (x)/*|------ - ----------- + tan(x)|
                |tan(x)        3              |
                \           tan (x)           /
$$2 \left(\tan^{2}{\left(x \right)} + 1\right) \left(- \frac{\tan^{2}{\left(x \right)} + 1}{\tan^{3}{\left(x \right)}} + \tan{\left(x \right)} + \frac{1}{\tan{\left(x \right)}}\right)$$
The third derivative [src]
  /                                                2                                            3\
  |                 2                 /       2   \                                /       2   \ |
  |    /       2   \         2      5*\1 + tan (x)/         2    /       2   \   3*\1 + tan (x)/ |
2*|2 + \1 + tan (x)/  + 2*tan (x) - ---------------- + 2*tan (x)*\1 + tan (x)/ + ----------------|
  |                                        2                                            4        |
  \                                     tan (x)                                      tan (x)     /
$$2 \left(\frac{3 \left(\tan^{2}{\left(x \right)} + 1\right)^{3}}{\tan^{4}{\left(x \right)}} + \left(\tan^{2}{\left(x \right)} + 1\right)^{2} - \frac{5 \left(\tan^{2}{\left(x \right)} + 1\right)^{2}}{\tan^{2}{\left(x \right)}} + 2 \left(\tan^{2}{\left(x \right)} + 1\right) \tan^{2}{\left(x \right)} + 2 \tan^{2}{\left(x \right)} + 2\right)$$