Mister Exam

Other calculators


tgx/(8x^2+5)

Derivative of tgx/(8x^2+5)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
 tan(x) 
--------
   2    
8*x  + 5
$$\frac{\tan{\left(x \right)}}{8 x^{2} + 5}$$
Detail solution
  1. Apply the quotient rule, which is:

    and .

    To find :

    1. Rewrite the function to be differentiated:

    2. Apply the quotient rule, which is:

      and .

      To find :

      1. The derivative of sine is cosine:

      To find :

      1. The derivative of cosine is negative sine:

      Now plug in to the quotient rule:

    To find :

    1. Differentiate term by term:

      1. The derivative of the constant is zero.

      2. The derivative of a constant times a function is the constant times the derivative of the function.

        1. Apply the power rule: goes to

        So, the result is:

      The result is:

    Now plug in to the quotient rule:

  2. Now simplify:


The answer is:

The graph
The first derivative [src]
       2                 
1 + tan (x)   16*x*tan(x)
----------- - -----------
     2                  2
  8*x  + 5    /   2    \ 
              \8*x  + 5/ 
$$- \frac{16 x \tan{\left(x \right)}}{\left(8 x^{2} + 5\right)^{2}} + \frac{\tan^{2}{\left(x \right)} + 1}{8 x^{2} + 5}$$
The second derivative [src]
  /                                              /          2  \       \
  |                                              |      32*x   |       |
  |                                            8*|-1 + --------|*tan(x)|
  |                            /       2   \     |            2|       |
  |/       2   \          16*x*\1 + tan (x)/     \     5 + 8*x /       |
2*|\1 + tan (x)/*tan(x) - ------------------ + ------------------------|
  |                                   2                       2        |
  \                            5 + 8*x                 5 + 8*x         /
------------------------------------------------------------------------
                                       2                                
                                5 + 8*x                                 
$$\frac{2 \left(- \frac{16 x \left(\tan^{2}{\left(x \right)} + 1\right)}{8 x^{2} + 5} + \left(\tan^{2}{\left(x \right)} + 1\right) \tan{\left(x \right)} + \frac{8 \left(\frac{32 x^{2}}{8 x^{2} + 5} - 1\right) \tan{\left(x \right)}}{8 x^{2} + 5}\right)}{8 x^{2} + 5}$$
The third derivative [src]
  /                                                 /          2  \         /          2  \                                   \
  |                                   /       2   \ |      32*x   |         |      16*x   |                                   |
  |                                24*\1 + tan (x)/*|-1 + --------|   768*x*|-1 + --------|*tan(x)                            |
  |                                                 |            2|         |            2|               /       2   \       |
  |/       2   \ /         2   \                    \     5 + 8*x /         \     5 + 8*x /          48*x*\1 + tan (x)/*tan(x)|
2*|\1 + tan (x)/*\1 + 3*tan (x)/ + -------------------------------- - ---------------------------- - -------------------------|
  |                                                   2                                 2                            2        |
  |                                            5 + 8*x                        /       2\                      5 + 8*x         |
  \                                                                           \5 + 8*x /                                      /
-------------------------------------------------------------------------------------------------------------------------------
                                                                   2                                                           
                                                            5 + 8*x                                                            
$$\frac{2 \left(- \frac{48 x \left(\tan^{2}{\left(x \right)} + 1\right) \tan{\left(x \right)}}{8 x^{2} + 5} - \frac{768 x \left(\frac{16 x^{2}}{8 x^{2} + 5} - 1\right) \tan{\left(x \right)}}{\left(8 x^{2} + 5\right)^{2}} + \left(\tan^{2}{\left(x \right)} + 1\right) \left(3 \tan^{2}{\left(x \right)} + 1\right) + \frac{24 \left(\frac{32 x^{2}}{8 x^{2} + 5} - 1\right) \left(\tan^{2}{\left(x \right)} + 1\right)}{8 x^{2} + 5}\right)}{8 x^{2} + 5}$$
The graph
Derivative of tgx/(8x^2+5)