Apply the quotient rule, which is:
and .
To find :
Rewrite the function to be differentiated:
Apply the quotient rule, which is:
and .
To find :
The derivative of sine is cosine:
To find :
The derivative of cosine is negative sine:
Now plug in to the quotient rule:
To find :
Differentiate term by term:
The derivative of the constant is zero.
The derivative of a constant times a function is the constant times the derivative of the function.
Apply the power rule: goes to
So, the result is:
The result is:
Now plug in to the quotient rule:
Now simplify:
The answer is:
2
1 + tan (x) 16*x*tan(x)
----------- - -----------
2 2
8*x + 5 / 2 \
\8*x + 5/
/ / 2 \ \
| | 32*x | |
| 8*|-1 + --------|*tan(x)|
| / 2 \ | 2| |
|/ 2 \ 16*x*\1 + tan (x)/ \ 5 + 8*x / |
2*|\1 + tan (x)/*tan(x) - ------------------ + ------------------------|
| 2 2 |
\ 5 + 8*x 5 + 8*x /
------------------------------------------------------------------------
2
5 + 8*x
/ / 2 \ / 2 \ \
| / 2 \ | 32*x | | 16*x | |
| 24*\1 + tan (x)/*|-1 + --------| 768*x*|-1 + --------|*tan(x) |
| | 2| | 2| / 2 \ |
|/ 2 \ / 2 \ \ 5 + 8*x / \ 5 + 8*x / 48*x*\1 + tan (x)/*tan(x)|
2*|\1 + tan (x)/*\1 + 3*tan (x)/ + -------------------------------- - ---------------------------- - -------------------------|
| 2 2 2 |
| 5 + 8*x / 2\ 5 + 8*x |
\ \5 + 8*x / /
-------------------------------------------------------------------------------------------------------------------------------
2
5 + 8*x