Mister Exam

Derivative of tgu/sinv

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
tan(u)
------
sin(v)
$$\frac{\tan{\left(u \right)}}{\sin{\left(v \right)}}$$
tan(u)/sin(v)
Detail solution
  1. The derivative of a constant times a function is the constant times the derivative of the function.

    1. Rewrite the function to be differentiated:

    2. Apply the quotient rule, which is:

      and .

      To find :

      1. The derivative of sine is cosine:

      To find :

      1. The derivative of cosine is negative sine:

      Now plug in to the quotient rule:

    So, the result is:

  2. Now simplify:


The answer is:

The first derivative [src]
       2   
1 + tan (u)
-----------
   sin(v)  
$$\frac{\tan^{2}{\left(u \right)} + 1}{\sin{\left(v \right)}}$$
The second derivative [src]
  /       2   \       
2*\1 + tan (u)/*tan(u)
----------------------
        sin(v)        
$$\frac{2 \left(\tan^{2}{\left(u \right)} + 1\right) \tan{\left(u \right)}}{\sin{\left(v \right)}}$$
The third derivative [src]
  /       2   \ /         2   \
2*\1 + tan (u)/*\1 + 3*tan (u)/
-------------------------------
             sin(v)            
$$\frac{2 \left(\tan^{2}{\left(u \right)} + 1\right) \left(3 \tan^{2}{\left(u \right)} + 1\right)}{\sin{\left(v \right)}}$$