Mister Exam

Derivative of tg(x)/ln(x)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
tan(x)
------
log(x)
$$\frac{\tan{\left(x \right)}}{\log{\left(x \right)}}$$
tan(x)/log(x)
Detail solution
  1. Apply the quotient rule, which is:

    and .

    To find :

    1. Rewrite the function to be differentiated:

    2. Apply the quotient rule, which is:

      and .

      To find :

      1. The derivative of sine is cosine:

      To find :

      1. The derivative of cosine is negative sine:

      Now plug in to the quotient rule:

    To find :

    1. The derivative of is .

    Now plug in to the quotient rule:

  2. Now simplify:


The answer is:

The graph
The first derivative [src]
       2               
1 + tan (x)     tan(x) 
----------- - ---------
   log(x)          2   
              x*log (x)
$$\frac{\tan^{2}{\left(x \right)} + 1}{\log{\left(x \right)}} - \frac{\tan{\left(x \right)}}{x \log{\left(x \right)}^{2}}$$
The second derivative [src]
                                           /      2   \       
                           /       2   \   |1 + ------|*tan(x)
  /       2   \          2*\1 + tan (x)/   \    log(x)/       
2*\1 + tan (x)/*tan(x) - --------------- + -------------------
                             x*log(x)            2            
                                                x *log(x)     
--------------------------------------------------------------
                            log(x)                            
$$\frac{2 \left(\tan^{2}{\left(x \right)} + 1\right) \tan{\left(x \right)} - \frac{2 \left(\tan^{2}{\left(x \right)} + 1\right)}{x \log{\left(x \right)}} + \frac{\left(1 + \frac{2}{\log{\left(x \right)}}\right) \tan{\left(x \right)}}{x^{2} \log{\left(x \right)}}}{\log{\left(x \right)}}$$
The third derivative [src]
                                                             /      3         3   \                                      
                                                           2*|1 + ------ + -------|*tan(x)     /       2   \ /      2   \
                                    /       2   \            |    log(x)      2   |          3*\1 + tan (x)/*|1 + ------|
  /       2   \ /         2   \   6*\1 + tan (x)/*tan(x)     \             log (x)/                          \    log(x)/
2*\1 + tan (x)/*\1 + 3*tan (x)/ - ---------------------- - ------------------------------- + ----------------------------
                                         x*log(x)                      3                               2                 
                                                                      x *log(x)                       x *log(x)          
-------------------------------------------------------------------------------------------------------------------------
                                                          log(x)                                                         
$$\frac{2 \left(\tan^{2}{\left(x \right)} + 1\right) \left(3 \tan^{2}{\left(x \right)} + 1\right) - \frac{6 \left(\tan^{2}{\left(x \right)} + 1\right) \tan{\left(x \right)}}{x \log{\left(x \right)}} + \frac{3 \left(1 + \frac{2}{\log{\left(x \right)}}\right) \left(\tan^{2}{\left(x \right)} + 1\right)}{x^{2} \log{\left(x \right)}} - \frac{2 \left(1 + \frac{3}{\log{\left(x \right)}} + \frac{3}{\log{\left(x \right)}^{2}}\right) \tan{\left(x \right)}}{x^{3} \log{\left(x \right)}}}{\log{\left(x \right)}}$$