Mister Exam

Other calculators


(tg2x)*sqrt(3x^2-5x+1)

Derivative of (tg2x)*sqrt(3x^2-5x+1)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
            ________________
           /    2           
tan(2*x)*\/  3*x  - 5*x + 1 
3x25x+1tan(2x)\sqrt{3 x^{2} - 5 x + 1} \tan{\left(2 x \right)}
  /            ________________\
d |           /    2           |
--\tan(2*x)*\/  3*x  - 5*x + 1 /
dx                              
ddx3x25x+1tan(2x)\frac{d}{d x} \sqrt{3 x^{2} - 5 x + 1} \tan{\left(2 x \right)}
Detail solution
  1. Apply the product rule:

    ddxf(x)g(x)=f(x)ddxg(x)+g(x)ddxf(x)\frac{d}{d x} f{\left(x \right)} g{\left(x \right)} = f{\left(x \right)} \frac{d}{d x} g{\left(x \right)} + g{\left(x \right)} \frac{d}{d x} f{\left(x \right)}

    f(x)=tan(2x)f{\left(x \right)} = \tan{\left(2 x \right)}; to find ddxf(x)\frac{d}{d x} f{\left(x \right)}:

    1. Rewrite the function to be differentiated:

      tan(2x)=sin(2x)cos(2x)\tan{\left(2 x \right)} = \frac{\sin{\left(2 x \right)}}{\cos{\left(2 x \right)}}

    2. Apply the quotient rule, which is:

      ddxf(x)g(x)=f(x)ddxg(x)+g(x)ddxf(x)g2(x)\frac{d}{d x} \frac{f{\left(x \right)}}{g{\left(x \right)}} = \frac{- f{\left(x \right)} \frac{d}{d x} g{\left(x \right)} + g{\left(x \right)} \frac{d}{d x} f{\left(x \right)}}{g^{2}{\left(x \right)}}

      f(x)=sin(2x)f{\left(x \right)} = \sin{\left(2 x \right)} and g(x)=cos(2x)g{\left(x \right)} = \cos{\left(2 x \right)}.

      To find ddxf(x)\frac{d}{d x} f{\left(x \right)}:

      1. Let u=2xu = 2 x.

      2. The derivative of sine is cosine:

        ddusin(u)=cos(u)\frac{d}{d u} \sin{\left(u \right)} = \cos{\left(u \right)}

      3. Then, apply the chain rule. Multiply by ddx2x\frac{d}{d x} 2 x:

        1. The derivative of a constant times a function is the constant times the derivative of the function.

          1. Apply the power rule: xx goes to 11

          So, the result is: 22

        The result of the chain rule is:

        2cos(2x)2 \cos{\left(2 x \right)}

      To find ddxg(x)\frac{d}{d x} g{\left(x \right)}:

      1. Let u=2xu = 2 x.

      2. The derivative of cosine is negative sine:

        dducos(u)=sin(u)\frac{d}{d u} \cos{\left(u \right)} = - \sin{\left(u \right)}

      3. Then, apply the chain rule. Multiply by ddx2x\frac{d}{d x} 2 x:

        1. The derivative of a constant times a function is the constant times the derivative of the function.

          1. Apply the power rule: xx goes to 11

          So, the result is: 22

        The result of the chain rule is:

        2sin(2x)- 2 \sin{\left(2 x \right)}

      Now plug in to the quotient rule:

      2sin2(2x)+2cos2(2x)cos2(2x)\frac{2 \sin^{2}{\left(2 x \right)} + 2 \cos^{2}{\left(2 x \right)}}{\cos^{2}{\left(2 x \right)}}

    g(x)=3x25x+1g{\left(x \right)} = \sqrt{3 x^{2} - 5 x + 1}; to find ddxg(x)\frac{d}{d x} g{\left(x \right)}:

    1. Let u=3x25x+1u = 3 x^{2} - 5 x + 1.

    2. Apply the power rule: u\sqrt{u} goes to 12u\frac{1}{2 \sqrt{u}}

    3. Then, apply the chain rule. Multiply by ddx(3x25x+1)\frac{d}{d x} \left(3 x^{2} - 5 x + 1\right):

      1. Differentiate 3x25x+13 x^{2} - 5 x + 1 term by term:

        1. The derivative of a constant times a function is the constant times the derivative of the function.

          1. Apply the power rule: x2x^{2} goes to 2x2 x

          So, the result is: 6x6 x

        2. The derivative of a constant times a function is the constant times the derivative of the function.

          1. The derivative of a constant times a function is the constant times the derivative of the function.

            1. Apply the power rule: xx goes to 11

            So, the result is: 55

          So, the result is: 5-5

        3. The derivative of the constant 11 is zero.

        The result is: 6x56 x - 5

      The result of the chain rule is:

      6x523x25x+1\frac{6 x - 5}{2 \sqrt{3 x^{2} - 5 x + 1}}

    The result is: (6x5)tan(2x)23x25x+1+(2sin2(2x)+2cos2(2x))3x25x+1cos2(2x)\frac{\left(6 x - 5\right) \tan{\left(2 x \right)}}{2 \sqrt{3 x^{2} - 5 x + 1}} + \frac{\left(2 \sin^{2}{\left(2 x \right)} + 2 \cos^{2}{\left(2 x \right)}\right) \sqrt{3 x^{2} - 5 x + 1}}{\cos^{2}{\left(2 x \right)}}

  2. Now simplify:

    6x210x+(6x5)sin(4x)4+23x25x+1cos2(2x)\frac{6 x^{2} - 10 x + \frac{\left(6 x - 5\right) \sin{\left(4 x \right)}}{4} + 2}{\sqrt{3 x^{2} - 5 x + 1} \cos^{2}{\left(2 x \right)}}


The answer is:

6x210x+(6x5)sin(4x)4+23x25x+1cos2(2x)\frac{6 x^{2} - 10 x + \frac{\left(6 x - 5\right) \sin{\left(4 x \right)}}{4} + 2}{\sqrt{3 x^{2} - 5 x + 1} \cos^{2}{\left(2 x \right)}}

The graph
02468-8-6-4-2-101050000-25000
The first derivative [src]
   ________________                                          
  /    2            /         2     \   (-5/2 + 3*x)*tan(2*x)
\/  3*x  - 5*x + 1 *\2 + 2*tan (2*x)/ + ---------------------
                                            ________________ 
                                           /    2            
                                         \/  3*x  - 5*x + 1  
(2tan2(2x)+2)3x25x+1+(3x52)tan(2x)3x25x+1\left(2 \tan^{2}{\left(2 x \right)} + 2\right) \sqrt{3 x^{2} - 5 x + 1} + \frac{\left(3 x - \frac{5}{2}\right) \tan{\left(2 x \right)}}{\sqrt{3 x^{2} - 5 x + 1}}
The second derivative [src]
                                                                                /                 2  \         
                                                                                |       (-5 + 6*x)   |         
                                                                                |-12 + --------------|*tan(2*x)
  /       2     \                   ________________                            |                   2|         
2*\1 + tan (2*x)/*(-5 + 6*x)       /              2  /       2     \            \      1 - 5*x + 3*x /         
---------------------------- + 8*\/  1 - 5*x + 3*x  *\1 + tan (2*x)/*tan(2*x) - -------------------------------
       ________________                                                                   ________________     
      /              2                                                                   /              2      
    \/  1 - 5*x + 3*x                                                                4*\/  1 - 5*x + 3*x       
8(tan2(2x)+1)3x25x+1tan(2x)+2(6x5)(tan2(2x)+1)3x25x+1((6x5)23x25x+112)tan(2x)43x25x+18 \left(\tan^{2}{\left(2 x \right)} + 1\right) \sqrt{3 x^{2} - 5 x + 1} \tan{\left(2 x \right)} + \frac{2 \cdot \left(6 x - 5\right) \left(\tan^{2}{\left(2 x \right)} + 1\right)}{\sqrt{3 x^{2} - 5 x + 1}} - \frac{\left(\frac{\left(6 x - 5\right)^{2}}{3 x^{2} - 5 x + 1} - 12\right) \tan{\left(2 x \right)}}{4 \sqrt{3 x^{2} - 5 x + 1}}
The third derivative [src]
                                                                             /                 2  \                                              /                 2  \                    
                                                             /       2     \ |       (-5 + 6*x)   |                                              |       (-5 + 6*x)   |                    
                                                           3*\1 + tan (2*x)/*|-12 + --------------|                                            3*|-12 + --------------|*(-5 + 6*x)*tan(2*x)
      ________________                                                       |                   2|      /       2     \                         |                   2|                    
     /              2  /       2     \ /         2     \                     \      1 - 5*x + 3*x /   12*\1 + tan (2*x)/*(-5 + 6*x)*tan(2*x)     \      1 - 5*x + 3*x /                    
16*\/  1 - 5*x + 3*x  *\1 + tan (2*x)/*\1 + 3*tan (2*x)/ - ---------------------------------------- + -------------------------------------- + --------------------------------------------
                                                                         ________________                         ________________                                          3/2            
                                                                        /              2                         /              2                           /             2\               
                                                                    2*\/  1 - 5*x + 3*x                        \/  1 - 5*x + 3*x                          8*\1 - 5*x + 3*x /               
16(tan2(2x)+1)(3tan2(2x)+1)3x25x+1+12(6x5)(tan2(2x)+1)tan(2x)3x25x+13((6x5)23x25x+112)(tan2(2x)+1)23x25x+1+3(6x5)((6x5)23x25x+112)tan(2x)8(3x25x+1)3216 \left(\tan^{2}{\left(2 x \right)} + 1\right) \left(3 \tan^{2}{\left(2 x \right)} + 1\right) \sqrt{3 x^{2} - 5 x + 1} + \frac{12 \cdot \left(6 x - 5\right) \left(\tan^{2}{\left(2 x \right)} + 1\right) \tan{\left(2 x \right)}}{\sqrt{3 x^{2} - 5 x + 1}} - \frac{3 \left(\frac{\left(6 x - 5\right)^{2}}{3 x^{2} - 5 x + 1} - 12\right) \left(\tan^{2}{\left(2 x \right)} + 1\right)}{2 \sqrt{3 x^{2} - 5 x + 1}} + \frac{3 \cdot \left(6 x - 5\right) \left(\frac{\left(6 x - 5\right)^{2}}{3 x^{2} - 5 x + 1} - 12\right) \tan{\left(2 x \right)}}{8 \left(3 x^{2} - 5 x + 1\right)^{\frac{3}{2}}}
The graph
Derivative of (tg2x)*sqrt(3x^2-5x+1)