Mister Exam

Other calculators

Derivative of tg^2(sqrt(lnx))

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
   2/  ________\
tan \\/ log(x) /
$$\tan^{2}{\left(\sqrt{\log{\left(x \right)}} \right)}$$
tan(sqrt(log(x)))^2
Detail solution
  1. Let .

  2. Apply the power rule: goes to

  3. Then, apply the chain rule. Multiply by :

    1. Rewrite the function to be differentiated:

    2. Apply the quotient rule, which is:

      and .

      To find :

      1. Let .

      2. The derivative of sine is cosine:

      3. Then, apply the chain rule. Multiply by :

        1. Let .

        2. Apply the power rule: goes to

        3. Then, apply the chain rule. Multiply by :

          1. The derivative of is .

          The result of the chain rule is:

        The result of the chain rule is:

      To find :

      1. Let .

      2. The derivative of cosine is negative sine:

      3. Then, apply the chain rule. Multiply by :

        1. Let .

        2. Apply the power rule: goes to

        3. Then, apply the chain rule. Multiply by :

          1. The derivative of is .

          The result of the chain rule is:

        The result of the chain rule is:

      Now plug in to the quotient rule:

    The result of the chain rule is:

  4. Now simplify:


The answer is:

The graph
The first derivative [src]
/       2/  ________\\    /  ________\
\1 + tan \\/ log(x) //*tan\\/ log(x) /
--------------------------------------
                 ________             
             x*\/ log(x)              
$$\frac{\left(\tan^{2}{\left(\sqrt{\log{\left(x \right)}} \right)} + 1\right) \tan{\left(\sqrt{\log{\left(x \right)}} \right)}}{x \sqrt{\log{\left(x \right)}}}$$
The second derivative [src]
                       /   2/  ________\          2/  ________\      /  ________\      /  ________\\
/       2/  ________\\ |tan \\/ log(x) /   1 + tan \\/ log(x) /   tan\\/ log(x) /   tan\\/ log(x) /|
\1 + tan \\/ log(x) //*|---------------- + -------------------- - --------------- - ---------------|
                       |     log(x)              2*log(x)              ________            3/2     |
                       \                                             \/ log(x)        2*log   (x)  /
----------------------------------------------------------------------------------------------------
                                                  2                                                 
                                                 x                                                  
$$\frac{\left(\tan^{2}{\left(\sqrt{\log{\left(x \right)}} \right)} + 1\right) \left(\frac{\tan^{2}{\left(\sqrt{\log{\left(x \right)}} \right)} + 1}{2 \log{\left(x \right)}} + \frac{\tan^{2}{\left(\sqrt{\log{\left(x \right)}} \right)}}{\log{\left(x \right)}} - \frac{\tan{\left(\sqrt{\log{\left(x \right)}} \right)}}{\sqrt{\log{\left(x \right)}}} - \frac{\tan{\left(\sqrt{\log{\left(x \right)}} \right)}}{2 \log{\left(x \right)}^{\frac{3}{2}}}\right)}{x^{2}}$$
The third derivative [src]
                       /   3/  ________\        2/  ________\        /  ________\     /       2/  ________\\        2/  ________\     /       2/  ________\\        /  ________\        /  ________\     /       2/  ________\\    /  ________\\
/       2/  ________\\ |tan \\/ log(x) /   3*tan \\/ log(x) /   2*tan\\/ log(x) /   3*\1 + tan \\/ log(x) //   3*tan \\/ log(x) /   3*\1 + tan \\/ log(x) //   3*tan\\/ log(x) /   3*tan\\/ log(x) /   2*\1 + tan \\/ log(x) //*tan\\/ log(x) /|
\1 + tan \\/ log(x) //*|---------------- - ------------------ + ----------------- - ------------------------ - ------------------ - ------------------------ + ----------------- + ----------------- + ----------------------------------------|
                       |      3/2                log(x)               ________              2*log(x)                    2                       2                      3/2                 5/2                           3/2                   |
                       \   log   (x)                                \/ log(x)                                      2*log (x)               4*log (x)              2*log   (x)         4*log   (x)                     log   (x)                /
------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
                                                                                                                        3                                                                                                                       
                                                                                                                       x                                                                                                                        
$$\frac{\left(\tan^{2}{\left(\sqrt{\log{\left(x \right)}} \right)} + 1\right) \left(- \frac{3 \left(\tan^{2}{\left(\sqrt{\log{\left(x \right)}} \right)} + 1\right)}{2 \log{\left(x \right)}} - \frac{3 \left(\tan^{2}{\left(\sqrt{\log{\left(x \right)}} \right)} + 1\right)}{4 \log{\left(x \right)}^{2}} + \frac{2 \left(\tan^{2}{\left(\sqrt{\log{\left(x \right)}} \right)} + 1\right) \tan{\left(\sqrt{\log{\left(x \right)}} \right)}}{\log{\left(x \right)}^{\frac{3}{2}}} - \frac{3 \tan^{2}{\left(\sqrt{\log{\left(x \right)}} \right)}}{\log{\left(x \right)}} - \frac{3 \tan^{2}{\left(\sqrt{\log{\left(x \right)}} \right)}}{2 \log{\left(x \right)}^{2}} + \frac{2 \tan{\left(\sqrt{\log{\left(x \right)}} \right)}}{\sqrt{\log{\left(x \right)}}} + \frac{\tan^{3}{\left(\sqrt{\log{\left(x \right)}} \right)}}{\log{\left(x \right)}^{\frac{3}{2}}} + \frac{3 \tan{\left(\sqrt{\log{\left(x \right)}} \right)}}{2 \log{\left(x \right)}^{\frac{3}{2}}} + \frac{3 \tan{\left(\sqrt{\log{\left(x \right)}} \right)}}{4 \log{\left(x \right)}^{\frac{5}{2}}}\right)}{x^{3}}$$