Mister Exam

Derivative of tg^4x+2x

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
   4         
tan (x) + 2*x
2x+tan4(x)2 x + \tan^{4}{\left(x \right)}
tan(x)^4 + 2*x
Detail solution
  1. Differentiate 2x+tan4(x)2 x + \tan^{4}{\left(x \right)} term by term:

    1. Let u=tan(x)u = \tan{\left(x \right)}.

    2. Apply the power rule: u4u^{4} goes to 4u34 u^{3}

    3. Then, apply the chain rule. Multiply by ddxtan(x)\frac{d}{d x} \tan{\left(x \right)}:

      1. Rewrite the function to be differentiated:

        tan(x)=sin(x)cos(x)\tan{\left(x \right)} = \frac{\sin{\left(x \right)}}{\cos{\left(x \right)}}

      2. Apply the quotient rule, which is:

        ddxf(x)g(x)=f(x)ddxg(x)+g(x)ddxf(x)g2(x)\frac{d}{d x} \frac{f{\left(x \right)}}{g{\left(x \right)}} = \frac{- f{\left(x \right)} \frac{d}{d x} g{\left(x \right)} + g{\left(x \right)} \frac{d}{d x} f{\left(x \right)}}{g^{2}{\left(x \right)}}

        f(x)=sin(x)f{\left(x \right)} = \sin{\left(x \right)} and g(x)=cos(x)g{\left(x \right)} = \cos{\left(x \right)}.

        To find ddxf(x)\frac{d}{d x} f{\left(x \right)}:

        1. The derivative of sine is cosine:

          ddxsin(x)=cos(x)\frac{d}{d x} \sin{\left(x \right)} = \cos{\left(x \right)}

        To find ddxg(x)\frac{d}{d x} g{\left(x \right)}:

        1. The derivative of cosine is negative sine:

          ddxcos(x)=sin(x)\frac{d}{d x} \cos{\left(x \right)} = - \sin{\left(x \right)}

        Now plug in to the quotient rule:

        sin2(x)+cos2(x)cos2(x)\frac{\sin^{2}{\left(x \right)} + \cos^{2}{\left(x \right)}}{\cos^{2}{\left(x \right)}}

      The result of the chain rule is:

      4(sin2(x)+cos2(x))tan3(x)cos2(x)\frac{4 \left(\sin^{2}{\left(x \right)} + \cos^{2}{\left(x \right)}\right) \tan^{3}{\left(x \right)}}{\cos^{2}{\left(x \right)}}

    4. The derivative of a constant times a function is the constant times the derivative of the function.

      1. Apply the power rule: xx goes to 11

      So, the result is: 22

    The result is: 4(sin2(x)+cos2(x))tan3(x)cos2(x)+2\frac{4 \left(\sin^{2}{\left(x \right)} + \cos^{2}{\left(x \right)}\right) \tan^{3}{\left(x \right)}}{\cos^{2}{\left(x \right)}} + 2

  2. Now simplify:

    4sin3(x)cos5(x)+2\frac{4 \sin^{3}{\left(x \right)}}{\cos^{5}{\left(x \right)}} + 2


The answer is:

4sin3(x)cos5(x)+2\frac{4 \sin^{3}{\left(x \right)}}{\cos^{5}{\left(x \right)}} + 2

The graph
02468-8-6-4-2-1010-200000000200000000
The first derivative [src]
       3    /         2   \
2 + tan (x)*\4 + 4*tan (x)/
(4tan2(x)+4)tan3(x)+2\left(4 \tan^{2}{\left(x \right)} + 4\right) \tan^{3}{\left(x \right)} + 2
The second derivative [src]
     2    /       2   \ /         2   \
4*tan (x)*\1 + tan (x)/*\3 + 5*tan (x)/
4(tan2(x)+1)(5tan2(x)+3)tan2(x)4 \left(\tan^{2}{\left(x \right)} + 1\right) \left(5 \tan^{2}{\left(x \right)} + 3\right) \tan^{2}{\left(x \right)}
The third derivative [src]
                /                           2                           \       
  /       2   \ |     4        /       2   \          2    /       2   \|       
8*\1 + tan (x)/*\2*tan (x) + 3*\1 + tan (x)/  + 10*tan (x)*\1 + tan (x)//*tan(x)
8(tan2(x)+1)(3(tan2(x)+1)2+10(tan2(x)+1)tan2(x)+2tan4(x))tan(x)8 \left(\tan^{2}{\left(x \right)} + 1\right) \left(3 \left(\tan^{2}{\left(x \right)} + 1\right)^{2} + 10 \left(\tan^{2}{\left(x \right)} + 1\right) \tan^{2}{\left(x \right)} + 2 \tan^{4}{\left(x \right)}\right) \tan{\left(x \right)}