Mister Exam

Derivative of tg(t^3)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
   / 3\
tan\t /
$$\tan{\left(t^{3} \right)}$$
tan(t^3)
Detail solution
  1. Rewrite the function to be differentiated:

  2. Apply the quotient rule, which is:

    and .

    To find :

    1. Let .

    2. The derivative of sine is cosine:

    3. Then, apply the chain rule. Multiply by :

      1. Apply the power rule: goes to

      The result of the chain rule is:

    To find :

    1. Let .

    2. The derivative of cosine is negative sine:

    3. Then, apply the chain rule. Multiply by :

      1. Apply the power rule: goes to

      The result of the chain rule is:

    Now plug in to the quotient rule:

  3. Now simplify:


The answer is:

The graph
The first derivative [src]
   2 /       2/ 3\\
3*t *\1 + tan \t //
$$3 t^{2} \left(\tan^{2}{\left(t^{3} \right)} + 1\right)$$
The second derivative [src]
    /       2/ 3\\ /       3    / 3\\
6*t*\1 + tan \t //*\1 + 3*t *tan\t //
$$6 t \left(3 t^{3} \tan{\left(t^{3} \right)} + 1\right) \left(\tan^{2}{\left(t^{3} \right)} + 1\right)$$
The third derivative [src]
  /                                  2                                                               \
  |       2/ 3\      6 /       2/ 3\\        3 /       2/ 3\\    / 3\       6    2/ 3\ /       2/ 3\\|
6*\1 + tan \t / + 9*t *\1 + tan \t //  + 18*t *\1 + tan \t //*tan\t / + 18*t *tan \t /*\1 + tan \t ///
$$6 \left(9 t^{6} \left(\tan^{2}{\left(t^{3} \right)} + 1\right)^{2} + 18 t^{6} \left(\tan^{2}{\left(t^{3} \right)} + 1\right) \tan^{2}{\left(t^{3} \right)} + 18 t^{3} \left(\tan^{2}{\left(t^{3} \right)} + 1\right) \tan{\left(t^{3} \right)} + \tan^{2}{\left(t^{3} \right)} + 1\right)$$