Mister Exam

Derivative of tg(arcsin(x))

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
tan(asin(x))
$$\tan{\left(\operatorname{asin}{\left(x \right)} \right)}$$
tan(asin(x))
Detail solution
  1. Rewrite the function to be differentiated:

  2. Apply the quotient rule, which is:

    and .

    To find :

    1. Apply the power rule: goes to

    To find :

    1. Let .

    2. Apply the power rule: goes to

    3. Then, apply the chain rule. Multiply by :

      1. Differentiate term by term:

        1. The derivative of the constant is zero.

        2. The derivative of a constant times a function is the constant times the derivative of the function.

          1. Apply the power rule: goes to

          So, the result is:

        The result is:

      The result of the chain rule is:

    Now plug in to the quotient rule:

  3. Now simplify:


The answer is:

The graph
The first derivative [src]
       2         
1 + tan (asin(x))
-----------------
      ________   
     /      2    
   \/  1 - x     
$$\frac{\tan^{2}{\left(\operatorname{asin}{\left(x \right)} \right)} + 1}{\sqrt{1 - x^{2}}}$$
The second derivative [src]
/       2         \ /     x        2*tan(asin(x))\
\1 + tan (asin(x))/*|----------- - --------------|
                    |        3/2            2    |
                    |/     2\         -1 + x     |
                    \\1 - x /                    /
$$\left(\frac{x}{\left(1 - x^{2}\right)^{\frac{3}{2}}} - \frac{2 \tan{\left(\operatorname{asin}{\left(x \right)} \right)}}{x^{2} - 1}\right) \left(\tan^{2}{\left(\operatorname{asin}{\left(x \right)} \right)} + 1\right)$$
The third derivative [src]
                    /                /       2         \          2           2                            \
/       2         \ |     1        2*\1 + tan (asin(x))/       3*x       4*tan (asin(x))   6*x*tan(asin(x))|
\1 + tan (asin(x))/*|----------- + --------------------- + ----------- + --------------- + ----------------|
                    |        3/2                3/2                5/2             3/2                 2   |
                    |/     2\           /     2\           /     2\        /     2\           /      2\    |
                    \\1 - x /           \1 - x /           \1 - x /        \1 - x /           \-1 + x /    /
$$\left(\tan^{2}{\left(\operatorname{asin}{\left(x \right)} \right)} + 1\right) \left(\frac{3 x^{2}}{\left(1 - x^{2}\right)^{\frac{5}{2}}} + \frac{6 x \tan{\left(\operatorname{asin}{\left(x \right)} \right)}}{\left(x^{2} - 1\right)^{2}} + \frac{2 \left(\tan^{2}{\left(\operatorname{asin}{\left(x \right)} \right)} + 1\right)}{\left(1 - x^{2}\right)^{\frac{3}{2}}} + \frac{4 \tan^{2}{\left(\operatorname{asin}{\left(x \right)} \right)}}{\left(1 - x^{2}\right)^{\frac{3}{2}}} + \frac{1}{\left(1 - x^{2}\right)^{\frac{3}{2}}}\right)$$