Mister Exam

Other calculators


10^(1-sin(3*x)^(4))

Derivative of 10^(1-sin(3*x)^(4))

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
         4     
  1 - sin (3*x)
10             
$$10^{1 - \sin^{4}{\left(3 x \right)}}$$
  /         4     \
d |  1 - sin (3*x)|
--\10             /
dx                 
$$\frac{d}{d x} 10^{1 - \sin^{4}{\left(3 x \right)}}$$
Detail solution
  1. Let .

  2. Then, apply the chain rule. Multiply by :

    1. Differentiate term by term:

      1. The derivative of the constant is zero.

      2. The derivative of a constant times a function is the constant times the derivative of the function.

        1. Let .

        2. Apply the power rule: goes to

        3. Then, apply the chain rule. Multiply by :

          1. Let .

          2. The derivative of sine is cosine:

          3. Then, apply the chain rule. Multiply by :

            1. The derivative of a constant times a function is the constant times the derivative of the function.

              1. Apply the power rule: goes to

              So, the result is:

            The result of the chain rule is:

          The result of the chain rule is:

        So, the result is:

      The result is:

    The result of the chain rule is:

  3. Now simplify:


The answer is:

The graph
The first derivative [src]
             4                                
      1 - sin (3*x)    3                      
-12*10             *sin (3*x)*cos(3*x)*log(10)
$$- 12 \cdot 10^{1 - \sin^{4}{\left(3 x \right)}} \log{\left(10 \right)} \sin^{3}{\left(3 x \right)} \cos{\left(3 x \right)}$$
The second derivative [src]
          4                                                                                 
      -sin (3*x)    2      /   2             2             2         4             \        
360*10          *sin (3*x)*\sin (3*x) - 3*cos (3*x) + 4*cos (3*x)*sin (3*x)*log(10)/*log(10)
$$360 \cdot 10^{- \sin^{4}{\left(3 x \right)}} \left(4 \log{\left(10 \right)} \sin^{4}{\left(3 x \right)} \cos^{2}{\left(3 x \right)} + \sin^{2}{\left(3 x \right)} - 3 \cos^{2}{\left(3 x \right)}\right) \log{\left(10 \right)} \sin^{2}{\left(3 x \right)}$$
The third derivative [src]
           4                                                                                                                                                     
       -sin (3*x) /       2             2             6                     2         2        8              2         4             \                          
2160*10          *\- 3*cos (3*x) + 5*sin (3*x) - 6*sin (3*x)*log(10) - 8*cos (3*x)*log (10)*sin (3*x) + 18*cos (3*x)*sin (3*x)*log(10)/*cos(3*x)*log(10)*sin(3*x)
$$2160 \cdot 10^{- \sin^{4}{\left(3 x \right)}} \left(- 8 \log{\left(10 \right)}^{2} \sin^{8}{\left(3 x \right)} \cos^{2}{\left(3 x \right)} - 6 \log{\left(10 \right)} \sin^{6}{\left(3 x \right)} + 18 \log{\left(10 \right)} \sin^{4}{\left(3 x \right)} \cos^{2}{\left(3 x \right)} + 5 \sin^{2}{\left(3 x \right)} - 3 \cos^{2}{\left(3 x \right)}\right) \log{\left(10 \right)} \sin{\left(3 x \right)} \cos{\left(3 x \right)}$$
The graph
Derivative of 10^(1-sin(3*x)^(4))