Mister Exam

Other calculators


10^(1-sin(3*x)^(4))

Derivative of 10^(1-sin(3*x)^(4))

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
         4     
  1 - sin (3*x)
10             
101sin4(3x)10^{1 - \sin^{4}{\left(3 x \right)}}
  /         4     \
d |  1 - sin (3*x)|
--\10             /
dx                 
ddx101sin4(3x)\frac{d}{d x} 10^{1 - \sin^{4}{\left(3 x \right)}}
Detail solution
  1. Let u=1sin4(3x)u = 1 - \sin^{4}{\left(3 x \right)}.

  2. ddu10u=10ulog(10)\frac{d}{d u} 10^{u} = 10^{u} \log{\left(10 \right)}

  3. Then, apply the chain rule. Multiply by ddx(1sin4(3x))\frac{d}{d x} \left(1 - \sin^{4}{\left(3 x \right)}\right):

    1. Differentiate 1sin4(3x)1 - \sin^{4}{\left(3 x \right)} term by term:

      1. The derivative of the constant 11 is zero.

      2. The derivative of a constant times a function is the constant times the derivative of the function.

        1. Let u=sin(3x)u = \sin{\left(3 x \right)}.

        2. Apply the power rule: u4u^{4} goes to 4u34 u^{3}

        3. Then, apply the chain rule. Multiply by ddxsin(3x)\frac{d}{d x} \sin{\left(3 x \right)}:

          1. Let u=3xu = 3 x.

          2. The derivative of sine is cosine:

            ddusin(u)=cos(u)\frac{d}{d u} \sin{\left(u \right)} = \cos{\left(u \right)}

          3. Then, apply the chain rule. Multiply by ddx3x\frac{d}{d x} 3 x:

            1. The derivative of a constant times a function is the constant times the derivative of the function.

              1. Apply the power rule: xx goes to 11

              So, the result is: 33

            The result of the chain rule is:

            3cos(3x)3 \cos{\left(3 x \right)}

          The result of the chain rule is:

          12sin3(3x)cos(3x)12 \sin^{3}{\left(3 x \right)} \cos{\left(3 x \right)}

        So, the result is: 12sin3(3x)cos(3x)- 12 \sin^{3}{\left(3 x \right)} \cos{\left(3 x \right)}

      The result is: 12sin3(3x)cos(3x)- 12 \sin^{3}{\left(3 x \right)} \cos{\left(3 x \right)}

    The result of the chain rule is:

    12101sin4(3x)log(10)sin3(3x)cos(3x)- 12 \cdot 10^{1 - \sin^{4}{\left(3 x \right)}} \log{\left(10 \right)} \sin^{3}{\left(3 x \right)} \cos{\left(3 x \right)}

  4. Now simplify:

    12010sin4(3x)log(10)sin3(3x)cos(3x)- 120 \cdot 10^{- \sin^{4}{\left(3 x \right)}} \log{\left(10 \right)} \sin^{3}{\left(3 x \right)} \cos{\left(3 x \right)}


The answer is:

12010sin4(3x)log(10)sin3(3x)cos(3x)- 120 \cdot 10^{- \sin^{4}{\left(3 x \right)}} \log{\left(10 \right)} \sin^{3}{\left(3 x \right)} \cos{\left(3 x \right)}

The graph
02468-8-6-4-2-1010-100100
The first derivative [src]
             4                                
      1 - sin (3*x)    3                      
-12*10             *sin (3*x)*cos(3*x)*log(10)
12101sin4(3x)log(10)sin3(3x)cos(3x)- 12 \cdot 10^{1 - \sin^{4}{\left(3 x \right)}} \log{\left(10 \right)} \sin^{3}{\left(3 x \right)} \cos{\left(3 x \right)}
The second derivative [src]
          4                                                                                 
      -sin (3*x)    2      /   2             2             2         4             \        
360*10          *sin (3*x)*\sin (3*x) - 3*cos (3*x) + 4*cos (3*x)*sin (3*x)*log(10)/*log(10)
36010sin4(3x)(4log(10)sin4(3x)cos2(3x)+sin2(3x)3cos2(3x))log(10)sin2(3x)360 \cdot 10^{- \sin^{4}{\left(3 x \right)}} \left(4 \log{\left(10 \right)} \sin^{4}{\left(3 x \right)} \cos^{2}{\left(3 x \right)} + \sin^{2}{\left(3 x \right)} - 3 \cos^{2}{\left(3 x \right)}\right) \log{\left(10 \right)} \sin^{2}{\left(3 x \right)}
The third derivative [src]
           4                                                                                                                                                     
       -sin (3*x) /       2             2             6                     2         2        8              2         4             \                          
2160*10          *\- 3*cos (3*x) + 5*sin (3*x) - 6*sin (3*x)*log(10) - 8*cos (3*x)*log (10)*sin (3*x) + 18*cos (3*x)*sin (3*x)*log(10)/*cos(3*x)*log(10)*sin(3*x)
216010sin4(3x)(8log(10)2sin8(3x)cos2(3x)6log(10)sin6(3x)+18log(10)sin4(3x)cos2(3x)+5sin2(3x)3cos2(3x))log(10)sin(3x)cos(3x)2160 \cdot 10^{- \sin^{4}{\left(3 x \right)}} \left(- 8 \log{\left(10 \right)}^{2} \sin^{8}{\left(3 x \right)} \cos^{2}{\left(3 x \right)} - 6 \log{\left(10 \right)} \sin^{6}{\left(3 x \right)} + 18 \log{\left(10 \right)} \sin^{4}{\left(3 x \right)} \cos^{2}{\left(3 x \right)} + 5 \sin^{2}{\left(3 x \right)} - 3 \cos^{2}{\left(3 x \right)}\right) \log{\left(10 \right)} \sin{\left(3 x \right)} \cos{\left(3 x \right)}
The graph
Derivative of 10^(1-sin(3*x)^(4))