Mister Exam

You entered:

tan(x)-1/cos(x)

What you mean?

Derivative of tan(x)-1/cos(x)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
             1   
tan(x) - 1*------
           cos(x)
$$\tan{\left(x \right)} - 1 \cdot \frac{1}{\cos{\left(x \right)}}$$
d /             1   \
--|tan(x) - 1*------|
dx\           cos(x)/
$$\frac{d}{d x} \left(\tan{\left(x \right)} - 1 \cdot \frac{1}{\cos{\left(x \right)}}\right)$$
Detail solution
  1. Differentiate term by term:

    1. Rewrite the function to be differentiated:

    2. Apply the quotient rule, which is:

      and .

      To find :

      1. The derivative of sine is cosine:

      To find :

      1. The derivative of cosine is negative sine:

      Now plug in to the quotient rule:

    3. The derivative of a constant times a function is the constant times the derivative of the function.

      1. Let .

      2. Apply the power rule: goes to

      3. Then, apply the chain rule. Multiply by :

        1. The derivative of cosine is negative sine:

        The result of the chain rule is:

      So, the result is:

    The result is:

  2. Now simplify:


The answer is:

The graph
The first derivative [src]
       2       sin(x)
1 + tan (x) - -------
                 2   
              cos (x)
$$\tan^{2}{\left(x \right)} + 1 - \frac{\sin{\left(x \right)}}{\cos^{2}{\left(x \right)}}$$
The second derivative [src]
                2                            
    1      2*sin (x)     /       2   \       
- ------ - --------- + 2*\1 + tan (x)/*tan(x)
  cos(x)       3                             
            cos (x)                          
$$2 \left(\tan^{2}{\left(x \right)} + 1\right) \tan{\left(x \right)} - \frac{2 \sin^{2}{\left(x \right)}}{\cos^{3}{\left(x \right)}} - \frac{1}{\cos{\left(x \right)}}$$
The third derivative [src]
               2        3                                        
  /       2   \    6*sin (x)   5*sin(x)        2    /       2   \
2*\1 + tan (x)/  - --------- - -------- + 4*tan (x)*\1 + tan (x)/
                       4          2                              
                    cos (x)    cos (x)                           
$$4 \left(\tan^{2}{\left(x \right)} + 1\right) \tan^{2}{\left(x \right)} + 2 \left(\tan^{2}{\left(x \right)} + 1\right)^{2} - \frac{6 \sin^{3}{\left(x \right)}}{\cos^{4}{\left(x \right)}} - \frac{5 \sin{\left(x \right)}}{\cos^{2}{\left(x \right)}}$$
The graph
Derivative of tan(x)-1/cos(x)