Mister Exam

Other calculators


tan(x)/((3*x))

Derivative of tan(x)/((3*x))

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
tan(x)
------
 3*x  
$$\frac{\tan{\left(x \right)}}{3 x}$$
tan(x)/((3*x))
Detail solution
  1. Apply the quotient rule, which is:

    and .

    To find :

    1. Rewrite the function to be differentiated:

    2. Apply the quotient rule, which is:

      and .

      To find :

      1. The derivative of sine is cosine:

      To find :

      1. The derivative of cosine is negative sine:

      Now plug in to the quotient rule:

    To find :

    1. The derivative of a constant times a function is the constant times the derivative of the function.

      1. Apply the power rule: goes to

      So, the result is:

    Now plug in to the quotient rule:

  2. Now simplify:


The answer is:

The graph
The first derivative [src]
 1  /       2   \   tan(x)
---*\1 + tan (x)/ - ------
3*x                     2 
                     3*x  
$$\frac{1}{3 x} \left(\tan^{2}{\left(x \right)} + 1\right) - \frac{\tan{\left(x \right)}}{3 x^{2}}$$
The second derivative [src]
  /                                       2   \
  |tan(x)   /       2   \          1 + tan (x)|
2*|------ + \1 + tan (x)/*tan(x) - -----------|
  |   2                                 x     |
  \  x                                        /
-----------------------------------------------
                      3*x                      
$$\frac{2 \left(\left(\tan^{2}{\left(x \right)} + 1\right) \tan{\left(x \right)} - \frac{\tan^{2}{\left(x \right)} + 1}{x} + \frac{\tan{\left(x \right)}}{x^{2}}\right)}{3 x}$$
The third derivative [src]
  /       2               /       2   \ /         2   \   /       2   \       \
  |1 + tan (x)   tan(x)   \1 + tan (x)/*\1 + 3*tan (x)/   \1 + tan (x)/*tan(x)|
2*|----------- - ------ + ----------------------------- - --------------------|
  |      2          3                   3                          x          |
  \     x          x                                                          /
-------------------------------------------------------------------------------
                                       x                                       
$$\frac{2 \left(\frac{\left(\tan^{2}{\left(x \right)} + 1\right) \left(3 \tan^{2}{\left(x \right)} + 1\right)}{3} - \frac{\left(\tan^{2}{\left(x \right)} + 1\right) \tan{\left(x \right)}}{x} + \frac{\tan^{2}{\left(x \right)} + 1}{x^{2}} - \frac{\tan{\left(x \right)}}{x^{3}}\right)}{x}$$
The graph
Derivative of tan(x)/((3*x))