Mister Exam

Derivative of tan(x)½

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
tan(x)
------
  2   
tan(x)2\frac{\tan{\left(x \right)}}{2}
tan(x)/2
Detail solution
  1. The derivative of a constant times a function is the constant times the derivative of the function.

    1. Rewrite the function to be differentiated:

      tan(x)=sin(x)cos(x)\tan{\left(x \right)} = \frac{\sin{\left(x \right)}}{\cos{\left(x \right)}}

    2. Apply the quotient rule, which is:

      ddxf(x)g(x)=f(x)ddxg(x)+g(x)ddxf(x)g2(x)\frac{d}{d x} \frac{f{\left(x \right)}}{g{\left(x \right)}} = \frac{- f{\left(x \right)} \frac{d}{d x} g{\left(x \right)} + g{\left(x \right)} \frac{d}{d x} f{\left(x \right)}}{g^{2}{\left(x \right)}}

      f(x)=sin(x)f{\left(x \right)} = \sin{\left(x \right)} and g(x)=cos(x)g{\left(x \right)} = \cos{\left(x \right)}.

      To find ddxf(x)\frac{d}{d x} f{\left(x \right)}:

      1. The derivative of sine is cosine:

        ddxsin(x)=cos(x)\frac{d}{d x} \sin{\left(x \right)} = \cos{\left(x \right)}

      To find ddxg(x)\frac{d}{d x} g{\left(x \right)}:

      1. The derivative of cosine is negative sine:

        ddxcos(x)=sin(x)\frac{d}{d x} \cos{\left(x \right)} = - \sin{\left(x \right)}

      Now plug in to the quotient rule:

      sin2(x)+cos2(x)cos2(x)\frac{\sin^{2}{\left(x \right)} + \cos^{2}{\left(x \right)}}{\cos^{2}{\left(x \right)}}

    So, the result is: sin2(x)+cos2(x)2cos2(x)\frac{\sin^{2}{\left(x \right)} + \cos^{2}{\left(x \right)}}{2 \cos^{2}{\left(x \right)}}

  2. Now simplify:

    12cos2(x)\frac{1}{2 \cos^{2}{\left(x \right)}}


The answer is:

12cos2(x)\frac{1}{2 \cos^{2}{\left(x \right)}}

The graph
02468-8-6-4-2-1010-500500
The first derivative [src]
       2   
1   tan (x)
- + -------
2      2   
tan2(x)2+12\frac{\tan^{2}{\left(x \right)}}{2} + \frac{1}{2}
The second derivative [src]
/       2   \       
\1 + tan (x)/*tan(x)
(tan2(x)+1)tan(x)\left(\tan^{2}{\left(x \right)} + 1\right) \tan{\left(x \right)}
The third derivative [src]
/       2   \ /         2   \
\1 + tan (x)/*\1 + 3*tan (x)/
(tan2(x)+1)(3tan2(x)+1)\left(\tan^{2}{\left(x \right)} + 1\right) \left(3 \tan^{2}{\left(x \right)} + 1\right)