Mister Exam

Other calculators

Derivative of tan^2(x^4-2)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
   2/ 4    \
tan \x  - 2/
$$\tan^{2}{\left(x^{4} - 2 \right)}$$
tan(x^4 - 2)^2
Detail solution
  1. Let .

  2. Apply the power rule: goes to

  3. Then, apply the chain rule. Multiply by :

    1. Rewrite the function to be differentiated:

    2. Apply the quotient rule, which is:

      and .

      To find :

      1. Let .

      2. The derivative of sine is cosine:

      3. Then, apply the chain rule. Multiply by :

        1. Differentiate term by term:

          1. Apply the power rule: goes to

          2. The derivative of the constant is zero.

          The result is:

        The result of the chain rule is:

      To find :

      1. Let .

      2. The derivative of cosine is negative sine:

      3. Then, apply the chain rule. Multiply by :

        1. Differentiate term by term:

          1. Apply the power rule: goes to

          2. The derivative of the constant is zero.

          The result is:

        The result of the chain rule is:

      Now plug in to the quotient rule:

    The result of the chain rule is:

  4. Now simplify:


The answer is:

The graph
The first derivative [src]
   3 /       2/ 4    \\    / 4    \
8*x *\1 + tan \x  - 2//*tan\x  - 2/
$$8 x^{3} \left(\tan^{2}{\left(x^{4} - 2 \right)} + 1\right) \tan{\left(x^{4} - 2 \right)}$$
The second derivative [src]
   2 /       2/      4\\ /     /      4\      4 /       2/      4\\      4    2/      4\\
8*x *\1 + tan \-2 + x //*\3*tan\-2 + x / + 4*x *\1 + tan \-2 + x // + 8*x *tan \-2 + x //
$$8 x^{2} \left(\tan^{2}{\left(x^{4} - 2 \right)} + 1\right) \left(4 x^{4} \left(\tan^{2}{\left(x^{4} - 2 \right)} + 1\right) + 8 x^{4} \tan^{2}{\left(x^{4} - 2 \right)} + 3 \tan{\left(x^{4} - 2 \right)}\right)$$
The third derivative [src]
     /       2/      4\\ /     /      4\       4 /       2/      4\\       8    3/      4\       4    2/      4\       8 /       2/      4\\    /      4\\
16*x*\1 + tan \-2 + x //*\3*tan\-2 + x / + 18*x *\1 + tan \-2 + x // + 32*x *tan \-2 + x / + 36*x *tan \-2 + x / + 64*x *\1 + tan \-2 + x //*tan\-2 + x //
$$16 x \left(\tan^{2}{\left(x^{4} - 2 \right)} + 1\right) \left(64 x^{8} \left(\tan^{2}{\left(x^{4} - 2 \right)} + 1\right) \tan{\left(x^{4} - 2 \right)} + 32 x^{8} \tan^{3}{\left(x^{4} - 2 \right)} + 18 x^{4} \left(\tan^{2}{\left(x^{4} - 2 \right)} + 1\right) + 36 x^{4} \tan^{2}{\left(x^{4} - 2 \right)} + 3 \tan{\left(x^{4} - 2 \right)}\right)$$