Mister Exam

Other calculators


tan^3(x^2)

Derivative of tan^3(x^2)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
   3/ 2\
tan \x /
$$\tan^{3}{\left(x^{2} \right)}$$
d /   3/ 2\\
--\tan \x //
dx          
$$\frac{d}{d x} \tan^{3}{\left(x^{2} \right)}$$
Detail solution
  1. Let .

  2. Apply the power rule: goes to

  3. Then, apply the chain rule. Multiply by :

    1. Rewrite the function to be differentiated:

    2. Apply the quotient rule, which is:

      and .

      To find :

      1. Let .

      2. The derivative of sine is cosine:

      3. Then, apply the chain rule. Multiply by :

        1. Apply the power rule: goes to

        The result of the chain rule is:

      To find :

      1. Let .

      2. The derivative of cosine is negative sine:

      3. Then, apply the chain rule. Multiply by :

        1. Apply the power rule: goes to

        The result of the chain rule is:

      Now plug in to the quotient rule:

    The result of the chain rule is:

  4. Now simplify:


The answer is:

The graph
The first derivative [src]
       2/ 2\ /       2/ 2\\
6*x*tan \x /*\1 + tan \x //
$$6 x \left(\tan^{2}{\left(x^{2} \right)} + 1\right) \tan^{2}{\left(x^{2} \right)}$$
The second derivative [src]
  /       2/ 2\\ /   2    2/ 2\      2 /       2/ 2\\      / 2\\    / 2\
6*\1 + tan \x //*\4*x *tan \x / + 4*x *\1 + tan \x // + tan\x //*tan\x /
$$6 \left(\tan^{2}{\left(x^{2} \right)} + 1\right) \left(4 x^{2} \tan^{2}{\left(x^{2} \right)} + 4 x^{2} \left(\tan^{2}{\left(x^{2} \right)} + 1\right) + \tan{\left(x^{2} \right)}\right) \tan{\left(x^{2} \right)}$$
The third derivative [src]
                    /                                2                                                                           \
     /       2/ 2\\ |     3/ 2\      2 /       2/ 2\\      /       2/ 2\\    / 2\      2    4/ 2\       2    2/ 2\ /       2/ 2\\|
24*x*\1 + tan \x //*\3*tan \x / + 2*x *\1 + tan \x //  + 3*\1 + tan \x //*tan\x / + 4*x *tan \x / + 14*x *tan \x /*\1 + tan \x ///
$$24 x \left(\tan^{2}{\left(x^{2} \right)} + 1\right) \left(4 x^{2} \tan^{4}{\left(x^{2} \right)} + 14 x^{2} \left(\tan^{2}{\left(x^{2} \right)} + 1\right) \tan^{2}{\left(x^{2} \right)} + 2 x^{2} \left(\tan^{2}{\left(x^{2} \right)} + 1\right)^{2} + 3 \tan^{3}{\left(x^{2} \right)} + 3 \left(\tan^{2}{\left(x^{2} \right)} + 1\right) \tan{\left(x^{2} \right)}\right)$$
The graph
Derivative of tan^3(x^2)