3/ 2\ tan \x /
d / 3/ 2\\ --\tan \x // dx
Let .
Apply the power rule: goes to
Then, apply the chain rule. Multiply by :
Rewrite the function to be differentiated:
Apply the quotient rule, which is:
and .
To find :
Let .
The derivative of sine is cosine:
Then, apply the chain rule. Multiply by :
Apply the power rule: goes to
The result of the chain rule is:
To find :
Let .
The derivative of cosine is negative sine:
Then, apply the chain rule. Multiply by :
Apply the power rule: goes to
The result of the chain rule is:
Now plug in to the quotient rule:
The result of the chain rule is:
Now simplify:
The answer is:
2/ 2\ / 2/ 2\\ 6*x*tan \x /*\1 + tan \x //
/ 2/ 2\\ / 2 2/ 2\ 2 / 2/ 2\\ / 2\\ / 2\ 6*\1 + tan \x //*\4*x *tan \x / + 4*x *\1 + tan \x // + tan\x //*tan\x /
/ 2 \
/ 2/ 2\\ | 3/ 2\ 2 / 2/ 2\\ / 2/ 2\\ / 2\ 2 4/ 2\ 2 2/ 2\ / 2/ 2\\|
24*x*\1 + tan \x //*\3*tan \x / + 2*x *\1 + tan \x // + 3*\1 + tan \x //*tan\x / + 4*x *tan \x / + 14*x *tan \x /*\1 + tan \x ///