1 ------ /x\ tan|-| \2/
d / 1 \ --|------| dx| /x\| |tan|-|| \ \2//
Let .
Apply the power rule: goes to
Then, apply the chain rule. Multiply by :
Rewrite the function to be differentiated:
Apply the quotient rule, which is:
and .
To find :
Let .
The derivative of sine is cosine:
Then, apply the chain rule. Multiply by :
The derivative of a constant times a function is the constant times the derivative of the function.
Apply the power rule: goes to
So, the result is:
The result of the chain rule is:
To find :
Let .
The derivative of cosine is negative sine:
Then, apply the chain rule. Multiply by :
The derivative of a constant times a function is the constant times the derivative of the function.
Apply the power rule: goes to
So, the result is:
The result of the chain rule is:
Now plug in to the quotient rule:
The result of the chain rule is:
Now simplify:
The answer is:
2/x\
tan |-|
1 \2/
- - - -------
2 2
-------------
2/x\
tan |-|
\2/
/ 2/x\\
| 1 + tan |-||
/ 2/x\\ | \2/|
|1 + tan |-||*|-1 + -----------|
\ \2// | 2/x\ |
| tan |-| |
\ \2/ /
--------------------------------
/x\
2*tan|-|
\2/
3 2
/ 2/x\\ / 2/x\\
3*|1 + tan |-|| 5*|1 + tan |-||
2/x\ \ \2// \ \2//
-2 - 2*tan |-| - ---------------- + ----------------
\2/ 4/x\ 2/x\
tan |-| tan |-|
\2/ \2/
----------------------------------------------------
4