tan(5*x) -------- sin(4*x)
tan(5*x)/sin(4*x)
Apply the quotient rule, which is:
and .
To find :
Rewrite the function to be differentiated:
Apply the quotient rule, which is:
and .
To find :
Let .
The derivative of sine is cosine:
Then, apply the chain rule. Multiply by :
The derivative of a constant times a function is the constant times the derivative of the function.
Apply the power rule: goes to
So, the result is:
The result of the chain rule is:
To find :
Let .
The derivative of cosine is negative sine:
Then, apply the chain rule. Multiply by :
The derivative of a constant times a function is the constant times the derivative of the function.
Apply the power rule: goes to
So, the result is:
The result of the chain rule is:
Now plug in to the quotient rule:
To find :
Let .
The derivative of sine is cosine:
Then, apply the chain rule. Multiply by :
The derivative of a constant times a function is the constant times the derivative of the function.
Apply the power rule: goes to
So, the result is:
The result of the chain rule is:
Now plug in to the quotient rule:
Now simplify:
The answer is:
2 5 + 5*tan (5*x) 4*cos(4*x)*tan(5*x) --------------- - ------------------- sin(4*x) 2 sin (4*x)
/ / 2 \ / 2 \ \ | | 2*cos (4*x)| / 2 \ 20*\1 + tan (5*x)/*cos(4*x)| 2*|8*|1 + -----------|*tan(5*x) + 25*\1 + tan (5*x)/*tan(5*x) - ---------------------------| | | 2 | sin(4*x) | \ \ sin (4*x) / / -------------------------------------------------------------------------------------------- sin(4*x)
/ / 2 \ \ | | 6*cos (4*x)| | | 32*|5 + -----------|*cos(4*x)*tan(5*x)| | / 2 \ / 2 \ | 2 | | | / 2 \ | 2*cos (4*x)| / 2 \ / 2 \ 300*\1 + tan (5*x)/*cos(4*x)*tan(5*x) \ sin (4*x) / | 2*|120*\1 + tan (5*x)/*|1 + -----------| + 125*\1 + tan (5*x)/*\1 + 3*tan (5*x)/ - ------------------------------------- - --------------------------------------| | | 2 | sin(4*x) sin(4*x) | \ \ sin (4*x) / / ------------------------------------------------------------------------------------------------------------------------------------------------------------------ sin(4*x)