Mister Exam

Other calculators

Derivative of tan(5*x)/sin(4*x)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
tan(5*x)
--------
sin(4*x)
$$\frac{\tan{\left(5 x \right)}}{\sin{\left(4 x \right)}}$$
tan(5*x)/sin(4*x)
Detail solution
  1. Apply the quotient rule, which is:

    and .

    To find :

    1. Rewrite the function to be differentiated:

    2. Apply the quotient rule, which is:

      and .

      To find :

      1. Let .

      2. The derivative of sine is cosine:

      3. Then, apply the chain rule. Multiply by :

        1. The derivative of a constant times a function is the constant times the derivative of the function.

          1. Apply the power rule: goes to

          So, the result is:

        The result of the chain rule is:

      To find :

      1. Let .

      2. The derivative of cosine is negative sine:

      3. Then, apply the chain rule. Multiply by :

        1. The derivative of a constant times a function is the constant times the derivative of the function.

          1. Apply the power rule: goes to

          So, the result is:

        The result of the chain rule is:

      Now plug in to the quotient rule:

    To find :

    1. Let .

    2. The derivative of sine is cosine:

    3. Then, apply the chain rule. Multiply by :

      1. The derivative of a constant times a function is the constant times the derivative of the function.

        1. Apply the power rule: goes to

        So, the result is:

      The result of the chain rule is:

    Now plug in to the quotient rule:

  2. Now simplify:


The answer is:

The graph
The first derivative [src]
         2                           
5 + 5*tan (5*x)   4*cos(4*x)*tan(5*x)
--------------- - -------------------
    sin(4*x)              2          
                       sin (4*x)     
$$\frac{5 \tan^{2}{\left(5 x \right)} + 5}{\sin{\left(4 x \right)}} - \frac{4 \cos{\left(4 x \right)} \tan{\left(5 x \right)}}{\sin^{2}{\left(4 x \right)}}$$
The second derivative [src]
  /  /         2     \                                             /       2     \         \
  |  |    2*cos (4*x)|               /       2     \            20*\1 + tan (5*x)/*cos(4*x)|
2*|8*|1 + -----------|*tan(5*x) + 25*\1 + tan (5*x)/*tan(5*x) - ---------------------------|
  |  |        2      |                                                    sin(4*x)         |
  \  \     sin (4*x) /                                                                     /
--------------------------------------------------------------------------------------------
                                          sin(4*x)                                          
$$\frac{2 \left(8 \left(1 + \frac{2 \cos^{2}{\left(4 x \right)}}{\sin^{2}{\left(4 x \right)}}\right) \tan{\left(5 x \right)} + 25 \left(\tan^{2}{\left(5 x \right)} + 1\right) \tan{\left(5 x \right)} - \frac{20 \left(\tan^{2}{\left(5 x \right)} + 1\right) \cos{\left(4 x \right)}}{\sin{\left(4 x \right)}}\right)}{\sin{\left(4 x \right)}}$$
The third derivative [src]
  /                                                                                                                           /         2     \                  \
  |                                                                                                                           |    6*cos (4*x)|                  |
  |                                                                                                                        32*|5 + -----------|*cos(4*x)*tan(5*x)|
  |                    /         2     \                                               /       2     \                        |        2      |                  |
  |    /       2     \ |    2*cos (4*x)|       /       2     \ /         2     \   300*\1 + tan (5*x)/*cos(4*x)*tan(5*x)      \     sin (4*x) /                  |
2*|120*\1 + tan (5*x)/*|1 + -----------| + 125*\1 + tan (5*x)/*\1 + 3*tan (5*x)/ - ------------------------------------- - --------------------------------------|
  |                    |        2      |                                                          sin(4*x)                                sin(4*x)               |
  \                    \     sin (4*x) /                                                                                                                         /
------------------------------------------------------------------------------------------------------------------------------------------------------------------
                                                                             sin(4*x)                                                                             
$$\frac{2 \left(120 \left(1 + \frac{2 \cos^{2}{\left(4 x \right)}}{\sin^{2}{\left(4 x \right)}}\right) \left(\tan^{2}{\left(5 x \right)} + 1\right) - \frac{32 \left(5 + \frac{6 \cos^{2}{\left(4 x \right)}}{\sin^{2}{\left(4 x \right)}}\right) \cos{\left(4 x \right)} \tan{\left(5 x \right)}}{\sin{\left(4 x \right)}} + 125 \left(\tan^{2}{\left(5 x \right)} + 1\right) \left(3 \tan^{2}{\left(5 x \right)} + 1\right) - \frac{300 \left(\tan^{2}{\left(5 x \right)} + 1\right) \cos{\left(4 x \right)} \tan{\left(5 x \right)}}{\sin{\left(4 x \right)}}\right)}{\sin{\left(4 x \right)}}$$