Mister Exam

Other calculators

Derivative of tan((9x^2-1)/3x)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
   /   2      \
   |9*x  - 1  |
tan|--------*x|
   \   3      /
$$\tan{\left(x \frac{9 x^{2} - 1}{3} \right)}$$
tan(((9*x^2 - 1)/3)*x)
Detail solution
  1. Rewrite the function to be differentiated:

  2. Apply the quotient rule, which is:

    and .

    To find :

    1. Let .

    2. The derivative of sine is cosine:

    3. Then, apply the chain rule. Multiply by :

      1. Apply the quotient rule, which is:

        and .

        To find :

        1. Apply the product rule:

          ; to find :

          1. Apply the power rule: goes to

          ; to find :

          1. Differentiate term by term:

            1. The derivative of the constant is zero.

            2. The derivative of a constant times a function is the constant times the derivative of the function.

              1. Apply the power rule: goes to

              So, the result is:

            The result is:

          The result is:

        To find :

        1. The derivative of the constant is zero.

        Now plug in to the quotient rule:

      The result of the chain rule is:

    To find :

    1. Let .

    2. The derivative of cosine is negative sine:

    3. Then, apply the chain rule. Multiply by :

      1. Apply the quotient rule, which is:

        and .

        To find :

        1. Apply the product rule:

          ; to find :

          1. Apply the power rule: goes to

          ; to find :

          1. Differentiate term by term:

            1. The derivative of the constant is zero.

            2. The derivative of a constant times a function is the constant times the derivative of the function.

              1. Apply the power rule: goes to

              So, the result is:

            The result is:

          The result is:

        To find :

        1. The derivative of the constant is zero.

        Now plug in to the quotient rule:

      The result of the chain rule is:

    Now plug in to the quotient rule:

  3. Now simplify:


The answer is:

The graph
The first derivative [src]
/        /   2      \\ /          2    \
|       2|9*x  - 1  || |   2   9*x  - 1|
|1 + tan |--------*x||*|6*x  + --------|
\        \   3      // \          3    /
$$\left(6 x^{2} + \frac{9 x^{2} - 1}{3}\right) \left(\tan^{2}{\left(x \frac{9 x^{2} - 1}{3} \right)} + 1\right)$$
The second derivative [src]
  /        /  /        2\\\                                          
  |       2|x*\-1 + 9*x /||                                          
  |    tan |-------------|| /                   2    /  /        2\\\
  |1       \      3      /| |       /         2\     |x*\-1 + 9*x /||
2*|- + -------------------|*|81*x + \-1 + 27*x / *tan|-------------||
  \9            9         / \                        \      3      //
$$2 \left(81 x + \left(27 x^{2} - 1\right)^{2} \tan{\left(\frac{x \left(9 x^{2} - 1\right)}{3} \right)}\right) \left(\frac{\tan^{2}{\left(\frac{x \left(9 x^{2} - 1\right)}{3} \right)}}{9} + \frac{1}{9}\right)$$
The third derivative [src]
  /                                                     2                                                                                                                                               \
  |                            /        /  /        2\\\              3                 3     /  /        2\\ /        /  /        2\\\                                                                 |
  |                            |       2|x*\-1 + 9*x /||  /         2\      /         2\     2|x*\-1 + 9*x /| |       2|x*\-1 + 9*x /||                                                                 |
  |          /  /        2\\   |1 + tan |-------------|| *\-1 + 27*x /    2*\-1 + 27*x / *tan |-------------|*|1 + tan |-------------||        /        /  /        2\\\                 /  /        2\\|
  |         2|x*\-1 + 9*x /|   \        \      3      //                                      \      3      / \        \      3      //        |       2|x*\-1 + 9*x /|| /         2\    |x*\-1 + 9*x /||
2*|9 + 9*tan |-------------| + ---------------------------------------- + ------------------------------------------------------------- + 18*x*|1 + tan |-------------||*\-1 + 27*x /*tan|-------------||
  \          \      3      /                      27                                                    27                                     \        \      3      //                 \      3      //
$$2 \left(18 x \left(27 x^{2} - 1\right) \left(\tan^{2}{\left(\frac{x \left(9 x^{2} - 1\right)}{3} \right)} + 1\right) \tan{\left(\frac{x \left(9 x^{2} - 1\right)}{3} \right)} + \frac{\left(27 x^{2} - 1\right)^{3} \left(\tan^{2}{\left(\frac{x \left(9 x^{2} - 1\right)}{3} \right)} + 1\right)^{2}}{27} + \frac{2 \left(27 x^{2} - 1\right)^{3} \left(\tan^{2}{\left(\frac{x \left(9 x^{2} - 1\right)}{3} \right)} + 1\right) \tan^{2}{\left(\frac{x \left(9 x^{2} - 1\right)}{3} \right)}}{27} + 9 \tan^{2}{\left(\frac{x \left(9 x^{2} - 1\right)}{3} \right)} + 9\right)$$