Mister Exam

Other calculators


tan(5x^7+3x^4)

Derivative of tan(5x^7+3x^4)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
   /   7      4\
tan\5*x  + 3*x /
$$\tan{\left(5 x^{7} + 3 x^{4} \right)}$$
tan(5*x^7 + 3*x^4)
Detail solution
  1. Rewrite the function to be differentiated:

  2. Apply the quotient rule, which is:

    and .

    To find :

    1. Let .

    2. The derivative of sine is cosine:

    3. Then, apply the chain rule. Multiply by :

      1. Differentiate term by term:

        1. The derivative of a constant times a function is the constant times the derivative of the function.

          1. Apply the power rule: goes to

          So, the result is:

        2. The derivative of a constant times a function is the constant times the derivative of the function.

          1. Apply the power rule: goes to

          So, the result is:

        The result is:

      The result of the chain rule is:

    To find :

    1. Let .

    2. The derivative of cosine is negative sine:

    3. Then, apply the chain rule. Multiply by :

      1. Differentiate term by term:

        1. The derivative of a constant times a function is the constant times the derivative of the function.

          1. Apply the power rule: goes to

          So, the result is:

        2. The derivative of a constant times a function is the constant times the derivative of the function.

          1. Apply the power rule: goes to

          So, the result is:

        The result is:

      The result of the chain rule is:

    Now plug in to the quotient rule:

  3. Now simplify:


The answer is:

The graph
The first derivative [src]
/       2/   7      4\\ /    3       6\
\1 + tan \5*x  + 3*x //*\12*x  + 35*x /
$$\left(35 x^{6} + 12 x^{3}\right) \left(\tan^{2}{\left(5 x^{7} + 3 x^{4} \right)} + 1\right)$$
The second derivative [src]
                               /                             2                   \
   2 /       2/ 4 /       3\\\ |          3    4 /         3\     / 4 /       3\\|
2*x *\1 + tan \x *\3 + 5*x ///*\18 + 105*x  + x *\12 + 35*x / *tan\x *\3 + 5*x ///
$$2 x^{2} \left(\tan^{2}{\left(x^{4} \left(5 x^{3} + 3\right) \right)} + 1\right) \left(x^{4} \left(35 x^{3} + 12\right)^{2} \tan{\left(x^{4} \left(5 x^{3} + 3\right) \right)} + 105 x^{3} + 18\right)$$
The third derivative [src]
                              /                             3                                              3                                                                        \
    /       2/ 4 /       3\\\ |          3    8 /         3\  /       2/ 4 /       3\\\      8 /         3\     2/ 4 /       3\\       4 /        3\ /         3\    / 4 /       3\\|
2*x*\1 + tan \x *\3 + 5*x ///*\36 + 525*x  + x *\12 + 35*x / *\1 + tan \x *\3 + 5*x /// + 2*x *\12 + 35*x / *tan \x *\3 + 5*x // + 18*x *\6 + 35*x /*\12 + 35*x /*tan\x *\3 + 5*x ///
$$2 x \left(\tan^{2}{\left(x^{4} \left(5 x^{3} + 3\right) \right)} + 1\right) \left(x^{8} \left(35 x^{3} + 12\right)^{3} \left(\tan^{2}{\left(x^{4} \left(5 x^{3} + 3\right) \right)} + 1\right) + 2 x^{8} \left(35 x^{3} + 12\right)^{3} \tan^{2}{\left(x^{4} \left(5 x^{3} + 3\right) \right)} + 18 x^{4} \left(35 x^{3} + 6\right) \left(35 x^{3} + 12\right) \tan{\left(x^{4} \left(5 x^{3} + 3\right) \right)} + 525 x^{3} + 36\right)$$
The graph
Derivative of tan(5x^7+3x^4)