Mister Exam

Derivative of tan(5x)+sin(2x)+sec(x)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
tan(5*x) + sin(2*x) + sec(x)
(sin(2x)+tan(5x))+sec(x)\left(\sin{\left(2 x \right)} + \tan{\left(5 x \right)}\right) + \sec{\left(x \right)}
tan(5*x) + sin(2*x) + sec(x)
Detail solution
  1. Differentiate (sin(2x)+tan(5x))+sec(x)\left(\sin{\left(2 x \right)} + \tan{\left(5 x \right)}\right) + \sec{\left(x \right)} term by term:

    1. Differentiate sin(2x)+tan(5x)\sin{\left(2 x \right)} + \tan{\left(5 x \right)} term by term:

      1. Rewrite the function to be differentiated:

        tan(5x)=sin(5x)cos(5x)\tan{\left(5 x \right)} = \frac{\sin{\left(5 x \right)}}{\cos{\left(5 x \right)}}

      2. Apply the quotient rule, which is:

        ddxf(x)g(x)=f(x)ddxg(x)+g(x)ddxf(x)g2(x)\frac{d}{d x} \frac{f{\left(x \right)}}{g{\left(x \right)}} = \frac{- f{\left(x \right)} \frac{d}{d x} g{\left(x \right)} + g{\left(x \right)} \frac{d}{d x} f{\left(x \right)}}{g^{2}{\left(x \right)}}

        f(x)=sin(5x)f{\left(x \right)} = \sin{\left(5 x \right)} and g(x)=cos(5x)g{\left(x \right)} = \cos{\left(5 x \right)}.

        To find ddxf(x)\frac{d}{d x} f{\left(x \right)}:

        1. Let u=5xu = 5 x.

        2. The derivative of sine is cosine:

          ddusin(u)=cos(u)\frac{d}{d u} \sin{\left(u \right)} = \cos{\left(u \right)}

        3. Then, apply the chain rule. Multiply by ddx5x\frac{d}{d x} 5 x:

          1. The derivative of a constant times a function is the constant times the derivative of the function.

            1. Apply the power rule: xx goes to 11

            So, the result is: 55

          The result of the chain rule is:

          5cos(5x)5 \cos{\left(5 x \right)}

        To find ddxg(x)\frac{d}{d x} g{\left(x \right)}:

        1. Let u=5xu = 5 x.

        2. The derivative of cosine is negative sine:

          dducos(u)=sin(u)\frac{d}{d u} \cos{\left(u \right)} = - \sin{\left(u \right)}

        3. Then, apply the chain rule. Multiply by ddx5x\frac{d}{d x} 5 x:

          1. The derivative of a constant times a function is the constant times the derivative of the function.

            1. Apply the power rule: xx goes to 11

            So, the result is: 55

          The result of the chain rule is:

          5sin(5x)- 5 \sin{\left(5 x \right)}

        Now plug in to the quotient rule:

        5sin2(5x)+5cos2(5x)cos2(5x)\frac{5 \sin^{2}{\left(5 x \right)} + 5 \cos^{2}{\left(5 x \right)}}{\cos^{2}{\left(5 x \right)}}

      3. Let u=2xu = 2 x.

      4. The derivative of sine is cosine:

        ddusin(u)=cos(u)\frac{d}{d u} \sin{\left(u \right)} = \cos{\left(u \right)}

      5. Then, apply the chain rule. Multiply by ddx2x\frac{d}{d x} 2 x:

        1. The derivative of a constant times a function is the constant times the derivative of the function.

          1. Apply the power rule: xx goes to 11

          So, the result is: 22

        The result of the chain rule is:

        2cos(2x)2 \cos{\left(2 x \right)}

      The result is: 5sin2(5x)+5cos2(5x)cos2(5x)+2cos(2x)\frac{5 \sin^{2}{\left(5 x \right)} + 5 \cos^{2}{\left(5 x \right)}}{\cos^{2}{\left(5 x \right)}} + 2 \cos{\left(2 x \right)}

    2. Rewrite the function to be differentiated:

      sec(x)=1cos(x)\sec{\left(x \right)} = \frac{1}{\cos{\left(x \right)}}

    3. Let u=cos(x)u = \cos{\left(x \right)}.

    4. Apply the power rule: 1u\frac{1}{u} goes to 1u2- \frac{1}{u^{2}}

    5. Then, apply the chain rule. Multiply by ddxcos(x)\frac{d}{d x} \cos{\left(x \right)}:

      1. The derivative of cosine is negative sine:

        ddxcos(x)=sin(x)\frac{d}{d x} \cos{\left(x \right)} = - \sin{\left(x \right)}

      The result of the chain rule is:

      sin(x)cos2(x)\frac{\sin{\left(x \right)}}{\cos^{2}{\left(x \right)}}

    The result is: 5sin2(5x)+5cos2(5x)cos2(5x)+sin(x)cos2(x)+2cos(2x)\frac{5 \sin^{2}{\left(5 x \right)} + 5 \cos^{2}{\left(5 x \right)}}{\cos^{2}{\left(5 x \right)}} + \frac{\sin{\left(x \right)}}{\cos^{2}{\left(x \right)}} + 2 \cos{\left(2 x \right)}

  2. Now simplify:

    4sin4(x)cos2(x)+sin(x)cos2(x)+6+5cos2(5x)4cos2(x)\frac{4 \sin^{4}{\left(x \right)}}{\cos^{2}{\left(x \right)}} + \frac{\sin{\left(x \right)}}{\cos^{2}{\left(x \right)}} + 6 + \frac{5}{\cos^{2}{\left(5 x \right)}} - \frac{4}{\cos^{2}{\left(x \right)}}


The answer is:

4sin4(x)cos2(x)+sin(x)cos2(x)+6+5cos2(5x)4cos2(x)\frac{4 \sin^{4}{\left(x \right)}}{\cos^{2}{\left(x \right)}} + \frac{\sin{\left(x \right)}}{\cos^{2}{\left(x \right)}} + 6 + \frac{5}{\cos^{2}{\left(5 x \right)}} - \frac{4}{\cos^{2}{\left(x \right)}}

The graph
02468-8-6-4-2-1010-50005000
The first derivative [src]
                      2                     
5 + 2*cos(2*x) + 5*tan (5*x) + sec(x)*tan(x)
2cos(2x)+tan(x)sec(x)+5tan2(5x)+52 \cos{\left(2 x \right)} + \tan{\left(x \right)} \sec{\left(x \right)} + 5 \tan^{2}{\left(5 x \right)} + 5
The second derivative [src]
                 2             /       2   \             /       2     \         
-4*sin(2*x) + tan (x)*sec(x) + \1 + tan (x)/*sec(x) + 50*\1 + tan (5*x)/*tan(5*x)
(tan2(x)+1)sec(x)+50(tan2(5x)+1)tan(5x)4sin(2x)+tan2(x)sec(x)\left(\tan^{2}{\left(x \right)} + 1\right) \sec{\left(x \right)} + 50 \left(\tan^{2}{\left(5 x \right)} + 1\right) \tan{\left(5 x \right)} - 4 \sin{\left(2 x \right)} + \tan^{2}{\left(x \right)} \sec{\left(x \right)}
The third derivative [src]
                                 2                                                                                 
                  /       2     \       3                    2      /       2     \     /       2   \              
-8*cos(2*x) + 250*\1 + tan (5*x)/  + tan (x)*sec(x) + 500*tan (5*x)*\1 + tan (5*x)/ + 5*\1 + tan (x)/*sec(x)*tan(x)
5(tan2(x)+1)tan(x)sec(x)+250(tan2(5x)+1)2+500(tan2(5x)+1)tan2(5x)8cos(2x)+tan3(x)sec(x)5 \left(\tan^{2}{\left(x \right)} + 1\right) \tan{\left(x \right)} \sec{\left(x \right)} + 250 \left(\tan^{2}{\left(5 x \right)} + 1\right)^{2} + 500 \left(\tan^{2}{\left(5 x \right)} + 1\right) \tan^{2}{\left(5 x \right)} - 8 \cos{\left(2 x \right)} + \tan^{3}{\left(x \right)} \sec{\left(x \right)}