tan(3*x) -------- tan(x)
tan(3*x)/tan(x)
Apply the quotient rule, which is:
and .
To find :
Rewrite the function to be differentiated:
Apply the quotient rule, which is:
and .
To find :
Let .
The derivative of sine is cosine:
Then, apply the chain rule. Multiply by :
The derivative of a constant times a function is the constant times the derivative of the function.
Apply the power rule: goes to
So, the result is:
The result of the chain rule is:
To find :
Let .
The derivative of cosine is negative sine:
Then, apply the chain rule. Multiply by :
The derivative of a constant times a function is the constant times the derivative of the function.
Apply the power rule: goes to
So, the result is:
The result of the chain rule is:
Now plug in to the quotient rule:
To find :
Now plug in to the quotient rule:
Now simplify:
The answer is:
2 / 2 \ 3 + 3*tan (3*x) \-1 - tan (x)/*tan(3*x) --------------- + ----------------------- tan(x) 2 tan (x)
/ / 2 \ / 2 \ / 2 \\ | / 2 \ / 2 \ | 1 + tan (x)| 3*\1 + tan (x)/*\1 + tan (3*x)/| 2*|9*\1 + tan (3*x)/*tan(3*x) + \1 + tan (x)/*|-1 + -----------|*tan(3*x) - -------------------------------| | | 2 | tan(x) | \ \ tan (x) / / ------------------------------------------------------------------------------------------------------------ tan(x)
/ / 2 \\ | / 2 \ / 2 \ | 1 + tan (x)|| | / 2 3\ 9*\1 + tan (x)/*\1 + tan (3*x)/*|-1 + -----------|| | | / 2 \ / 2 \ | / 2 \ / 2 \ / 2 \ / 2 \ | 2 || | | 2 5*\1 + tan (x)/ 3*\1 + tan (x)/ | 27*\1 + tan (3*x)/*\1 + 3*tan (3*x)/ 27*\1 + tan (x)/*\1 + tan (3*x)/*tan(3*x) \ tan (x) /| 2*|- |2 + 2*tan (x) - ---------------- + ----------------|*tan(3*x) + ------------------------------------ - ----------------------------------------- + --------------------------------------------------| | | 2 4 | tan(x) 2 tan(x) | \ \ tan (x) tan (x) / tan (x) /