Mister Exam

Derivative of (tan(3x))/(tan(x))

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
tan(3*x)
--------
 tan(x) 
$$\frac{\tan{\left(3 x \right)}}{\tan{\left(x \right)}}$$
tan(3*x)/tan(x)
Detail solution
  1. Apply the quotient rule, which is:

    and .

    To find :

    1. Rewrite the function to be differentiated:

    2. Apply the quotient rule, which is:

      and .

      To find :

      1. Let .

      2. The derivative of sine is cosine:

      3. Then, apply the chain rule. Multiply by :

        1. The derivative of a constant times a function is the constant times the derivative of the function.

          1. Apply the power rule: goes to

          So, the result is:

        The result of the chain rule is:

      To find :

      1. Let .

      2. The derivative of cosine is negative sine:

      3. Then, apply the chain rule. Multiply by :

        1. The derivative of a constant times a function is the constant times the derivative of the function.

          1. Apply the power rule: goes to

          So, the result is:

        The result of the chain rule is:

      Now plug in to the quotient rule:

    To find :

    Now plug in to the quotient rule:

  2. Now simplify:


The answer is:

The graph
The first derivative [src]
         2        /        2   \         
3 + 3*tan (3*x)   \-1 - tan (x)/*tan(3*x)
--------------- + -----------------------
     tan(x)                  2           
                          tan (x)        
$$\frac{\left(- \tan^{2}{\left(x \right)} - 1\right) \tan{\left(3 x \right)}}{\tan^{2}{\left(x \right)}} + \frac{3 \tan^{2}{\left(3 x \right)} + 3}{\tan{\left(x \right)}}$$
The second derivative [src]
  /                                           /            2   \              /       2   \ /       2     \\
  |  /       2     \            /       2   \ |     1 + tan (x)|            3*\1 + tan (x)/*\1 + tan (3*x)/|
2*|9*\1 + tan (3*x)/*tan(3*x) + \1 + tan (x)/*|-1 + -----------|*tan(3*x) - -------------------------------|
  |                                           |          2     |                         tan(x)            |
  \                                           \       tan (x)  /                                           /
------------------------------------------------------------------------------------------------------------
                                                   tan(x)                                                   
$$\frac{2 \left(\left(\frac{\tan^{2}{\left(x \right)} + 1}{\tan^{2}{\left(x \right)}} - 1\right) \left(\tan^{2}{\left(x \right)} + 1\right) \tan{\left(3 x \right)} - \frac{3 \left(\tan^{2}{\left(x \right)} + 1\right) \left(\tan^{2}{\left(3 x \right)} + 1\right)}{\tan{\left(x \right)}} + 9 \left(\tan^{2}{\left(3 x \right)} + 1\right) \tan{\left(3 x \right)}\right)}{\tan{\left(x \right)}}$$
The third derivative [src]
  /                                                                                                                                                                                      /            2   \\
  |                                                                                                                                                        /       2   \ /       2     \ |     1 + tan (x)||
  |  /                               2                  3\                                                                                               9*\1 + tan (x)/*\1 + tan (3*x)/*|-1 + -----------||
  |  |                  /       2   \      /       2   \ |               /       2     \ /         2     \      /       2   \ /       2     \                                            |          2     ||
  |  |         2      5*\1 + tan (x)/    3*\1 + tan (x)/ |            27*\1 + tan (3*x)/*\1 + 3*tan (3*x)/   27*\1 + tan (x)/*\1 + tan (3*x)/*tan(3*x)                                   \       tan (x)  /|
2*|- |2 + 2*tan (x) - ---------------- + ----------------|*tan(3*x) + ------------------------------------ - ----------------------------------------- + --------------------------------------------------|
  |  |                       2                  4        |                           tan(x)                                      2                                             tan(x)                      |
  \  \                    tan (x)            tan (x)     /                                                                    tan (x)                                                                      /
$$2 \left(\frac{9 \left(\frac{\tan^{2}{\left(x \right)} + 1}{\tan^{2}{\left(x \right)}} - 1\right) \left(\tan^{2}{\left(x \right)} + 1\right) \left(\tan^{2}{\left(3 x \right)} + 1\right)}{\tan{\left(x \right)}} - \frac{27 \left(\tan^{2}{\left(x \right)} + 1\right) \left(\tan^{2}{\left(3 x \right)} + 1\right) \tan{\left(3 x \right)}}{\tan^{2}{\left(x \right)}} + \frac{27 \left(\tan^{2}{\left(3 x \right)} + 1\right) \left(3 \tan^{2}{\left(3 x \right)} + 1\right)}{\tan{\left(x \right)}} - \left(\frac{3 \left(\tan^{2}{\left(x \right)} + 1\right)^{3}}{\tan^{4}{\left(x \right)}} - \frac{5 \left(\tan^{2}{\left(x \right)} + 1\right)^{2}}{\tan^{2}{\left(x \right)}} + 2 \tan^{2}{\left(x \right)} + 2\right) \tan{\left(3 x \right)}\right)$$