Mister Exam

Other calculators


(tan2x)/(1-cot2x)

Derivative of (tan2x)/(1-cot2x)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  tan(2*x)  
------------
1 - cot(2*x)
$$\frac{\tan{\left(2 x \right)}}{1 - \cot{\left(2 x \right)}}$$
d /  tan(2*x)  \
--|------------|
dx\1 - cot(2*x)/
$$\frac{d}{d x} \frac{\tan{\left(2 x \right)}}{1 - \cot{\left(2 x \right)}}$$
Detail solution
  1. Apply the quotient rule, which is:

    and .

    To find :

    1. Rewrite the function to be differentiated:

    2. Apply the quotient rule, which is:

      and .

      To find :

      1. Let .

      2. The derivative of sine is cosine:

      3. Then, apply the chain rule. Multiply by :

        1. The derivative of a constant times a function is the constant times the derivative of the function.

          1. Apply the power rule: goes to

          So, the result is:

        The result of the chain rule is:

      To find :

      1. Let .

      2. The derivative of cosine is negative sine:

      3. Then, apply the chain rule. Multiply by :

        1. The derivative of a constant times a function is the constant times the derivative of the function.

          1. Apply the power rule: goes to

          So, the result is:

        The result of the chain rule is:

      Now plug in to the quotient rule:

    To find :

    1. Differentiate term by term:

      1. The derivative of the constant is zero.

      2. The derivative of a constant times a function is the constant times the derivative of the function.

        1. There are multiple ways to do this derivative.

          Method #1

          1. Rewrite the function to be differentiated:

          2. Let .

          3. Apply the power rule: goes to

          4. Then, apply the chain rule. Multiply by :

            1. Let .

            2. Then, apply the chain rule. Multiply by :

              1. The derivative of a constant times a function is the constant times the derivative of the function.

                1. Apply the power rule: goes to

                So, the result is:

              The result of the chain rule is:

            The result of the chain rule is:

          Method #2

          1. Rewrite the function to be differentiated:

          2. Apply the quotient rule, which is:

            and .

            To find :

            1. Let .

            2. The derivative of cosine is negative sine:

            3. Then, apply the chain rule. Multiply by :

              1. The derivative of a constant times a function is the constant times the derivative of the function.

                1. Apply the power rule: goes to

                So, the result is:

              The result of the chain rule is:

            To find :

            1. Let .

            2. The derivative of sine is cosine:

            3. Then, apply the chain rule. Multiply by :

              1. The derivative of a constant times a function is the constant times the derivative of the function.

                1. Apply the power rule: goes to

                So, the result is:

              The result of the chain rule is:

            Now plug in to the quotient rule:

        So, the result is:

      The result is:

    Now plug in to the quotient rule:

  2. Now simplify:


The answer is:

The graph
The first derivative [src]
         2        /          2     \         
2 + 2*tan (2*x)   \-2 - 2*cot (2*x)/*tan(2*x)
--------------- + ---------------------------
  1 - cot(2*x)                        2      
                        (1 - cot(2*x))       
$$\frac{2 \tan^{2}{\left(2 x \right)} + 2}{1 - \cot{\left(2 x \right)}} + \frac{\left(- 2 \cot^{2}{\left(2 x \right)} - 2\right) \tan{\left(2 x \right)}}{\left(1 - \cot{\left(2 x \right)}\right)^{2}}$$
The second derivative [src]
  /                                                                               /         2                \         \
  |                                                               /       2     \ |  1 + cot (2*x)           |         |
  |                             /       2     \ /       2     \   \1 + cot (2*x)/*|- ------------- + cot(2*x)|*tan(2*x)|
  |  /       2     \            \1 + cot (2*x)/*\1 + tan (2*x)/                   \  -1 + cot(2*x)           /         |
8*|- \1 + tan (2*x)/*tan(2*x) - ------------------------------- + -----------------------------------------------------|
  \                                      -1 + cot(2*x)                                -1 + cot(2*x)                    /
------------------------------------------------------------------------------------------------------------------------
                                                     -1 + cot(2*x)                                                      
$$\frac{8 \left(- \left(\tan^{2}{\left(2 x \right)} + 1\right) \tan{\left(2 x \right)} - \frac{\left(\tan^{2}{\left(2 x \right)} + 1\right) \left(\cot^{2}{\left(2 x \right)} + 1\right)}{\cot{\left(2 x \right)} - 1} + \frac{\left(\cot{\left(2 x \right)} - \frac{\cot^{2}{\left(2 x \right)} + 1}{\cot{\left(2 x \right)} - 1}\right) \left(\cot^{2}{\left(2 x \right)} + 1\right) \tan{\left(2 x \right)}}{\cot{\left(2 x \right)} - 1}\right)}{\cot{\left(2 x \right)} - 1}$$
The third derivative [src]
   /                                                      /                                   2                             \                                                                                                                       \
   |                                                      |                    /       2     \      /       2     \         |                                                                                                                       |
   |                                      /       2     \ |         2        3*\1 + cot (2*x)/    6*\1 + cot (2*x)/*cot(2*x)|                                                                                           /         2                \|
   |                                      \1 + cot (2*x)/*|1 + 3*cot (2*x) + ------------------ - --------------------------|*tan(2*x)                                                  /       2     \ /       2     \ |  1 + cot (2*x)           ||
   |                                                      |                                  2          -1 + cot(2*x)       |              /       2     \ /       2     \            3*\1 + cot (2*x)/*\1 + tan (2*x)/*|- ------------- + cot(2*x)||
   |  /       2     \ /         2     \                   \                   (-1 + cot(2*x))                               /            3*\1 + cot (2*x)/*\1 + tan (2*x)/*tan(2*x)                                     \  -1 + cot(2*x)           /|
16*|- \1 + tan (2*x)/*\1 + 3*tan (2*x)/ - -------------------------------------------------------------------------------------------- - ------------------------------------------ + --------------------------------------------------------------|
   \                                                                             -1 + cot(2*x)                                                         -1 + cot(2*x)                                          -1 + cot(2*x)                         /
-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
                                                                                                                    -1 + cot(2*x)                                                                                                                    
$$\frac{16 \left(- \left(\tan^{2}{\left(2 x \right)} + 1\right) \left(3 \tan^{2}{\left(2 x \right)} + 1\right) + \frac{3 \left(\tan^{2}{\left(2 x \right)} + 1\right) \left(\cot{\left(2 x \right)} - \frac{\cot^{2}{\left(2 x \right)} + 1}{\cot{\left(2 x \right)} - 1}\right) \left(\cot^{2}{\left(2 x \right)} + 1\right)}{\cot{\left(2 x \right)} - 1} - \frac{3 \left(\tan^{2}{\left(2 x \right)} + 1\right) \left(\cot^{2}{\left(2 x \right)} + 1\right) \tan{\left(2 x \right)}}{\cot{\left(2 x \right)} - 1} - \frac{\left(\cot^{2}{\left(2 x \right)} + 1\right) \left(3 \cot^{2}{\left(2 x \right)} + 1 - \frac{6 \left(\cot^{2}{\left(2 x \right)} + 1\right) \cot{\left(2 x \right)}}{\cot{\left(2 x \right)} - 1} + \frac{3 \left(\cot^{2}{\left(2 x \right)} + 1\right)^{2}}{\left(\cot{\left(2 x \right)} - 1\right)^{2}}\right) \tan{\left(2 x \right)}}{\cot{\left(2 x \right)} - 1}\right)}{\cot{\left(2 x \right)} - 1}$$
The graph
Derivative of (tan2x)/(1-cot2x)