Mister Exam

Other calculators

Derivative of t*arcsin(1-x)+arctg(x/2)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
                    /x\
t*asin(1 - x) + atan|-|
                    \2/
$$t \operatorname{asin}{\left(1 - x \right)} + \operatorname{atan}{\left(\frac{x}{2} \right)}$$
t*asin(1 - x) + atan(x/2)
The first derivative [src]
    1                t        
---------- - -----------------
  /     2\      ______________
  |    x |     /            2 
2*|1 + --|   \/  1 - (1 - x)  
  \    4 /                    
$$- \frac{t}{\sqrt{1 - \left(1 - x\right)^{2}}} + \frac{1}{2 \left(\frac{x^{2}}{4} + 1\right)}$$
The second derivative [src]
 /   4*x          t*(-1 + x)   \
-|--------- + -----------------|
 |        2                 3/2|
 |/     2\    /           2\   |
 \\4 + x /    \1 - (1 - x) /   /
$$- (\frac{t \left(x - 1\right)}{\left(1 - \left(1 - x\right)^{2}\right)^{\frac{3}{2}}} + \frac{4 x}{\left(x^{2} + 4\right)^{2}})$$
The third derivative [src]
                                        2                   2  
      4               t             16*x        3*t*(-1 + x)   
- --------- - ----------------- + --------- - -----------------
          2                 3/2           3                 5/2
  /     2\    /           2\      /     2\    /           2\   
  \4 + x /    \1 - (1 - x) /      \4 + x /    \1 - (1 - x) /   
$$- \frac{t}{\left(1 - \left(1 - x\right)^{2}\right)^{\frac{3}{2}}} - \frac{3 t \left(x - 1\right)^{2}}{\left(1 - \left(1 - x\right)^{2}\right)^{\frac{5}{2}}} + \frac{16 x^{2}}{\left(x^{2} + 4\right)^{3}} - \frac{4}{\left(x^{2} + 4\right)^{2}}$$