Let .
Apply the power rule: goes to
Then, apply the chain rule. Multiply by :
Apply the product rule:
; to find :
Apply the power rule: goes to
; to find :
The derivative of is .
The result is:
The result of the chain rule is:
The answer is:
__________ /1 log(x)\ \/ x*log(x) *|- + ------| \2 2 / ------------------------- x*log(x)
/ 2 \ __________ | (1 + log(x)) 2*(1 + log(x))| \/ x*log(x) *|-2*log(x) + ------------- - --------------| \ log(x) log(x) / --------------------------------------------------------- 2 4*x *log(x)
/ 2 2 3 \ __________ | 1 1 1 + log(x) 3*(1 + log(x)) 3*(1 + log(x)) (1 + log(x)) 9*(1 + log(x)) | \/ x*log(x) *|- - - ------ + ---------- - --------------- - --------------- + ------------- + -------------- + log(x)| | 2 log(x) 2 4*log(x) 2 2 4*log(x) | \ log (x) 4*log (x) 8*log (x) / ---------------------------------------------------------------------------------------------------------------------- 3 x *log(x)