Let .
Apply the power rule: goes to
Then, apply the chain rule. Multiply by :
Apply the product rule:
; to find :
Apply the power rule: goes to
; to find :
The derivative of is .
The result is:
The result of the chain rule is:
The answer is:
__________ /1 log(x)\
\/ x*log(x) *|- + ------|
\2 2 /
-------------------------
x*log(x)
/ 2 \
__________ | (1 + log(x)) 2*(1 + log(x))|
\/ x*log(x) *|-2*log(x) + ------------- - --------------|
\ log(x) log(x) /
---------------------------------------------------------
2
4*x *log(x)
/ 2 2 3 \
__________ | 1 1 1 + log(x) 3*(1 + log(x)) 3*(1 + log(x)) (1 + log(x)) 9*(1 + log(x)) |
\/ x*log(x) *|- - - ------ + ---------- - --------------- - --------------- + ------------- + -------------- + log(x)|
| 2 log(x) 2 4*log(x) 2 2 4*log(x) |
\ log (x) 4*log (x) 8*log (x) /
----------------------------------------------------------------------------------------------------------------------
3
x *log(x)