Mister Exam

Derivative of sqrtxln^2x

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  ___    2   
\/ x *log (x)
$$\sqrt{x} \log{\left(x \right)}^{2}$$
sqrt(x)*log(x)^2
Detail solution
  1. Apply the product rule:

    ; to find :

    1. Apply the power rule: goes to

    ; to find :

    1. Let .

    2. Apply the power rule: goes to

    3. Then, apply the chain rule. Multiply by :

      1. The derivative of is .

      The result of the chain rule is:

    The result is:

  2. Now simplify:


The answer is:

The graph
The first derivative [src]
   2              
log (x)   2*log(x)
------- + --------
    ___      ___  
2*\/ x     \/ x   
$$\frac{\log{\left(x \right)}^{2}}{2 \sqrt{x}} + \frac{2 \log{\left(x \right)}}{\sqrt{x}}$$
The second derivative [src]
       2   
    log (x)
2 - -------
       4   
-----------
     3/2   
    x      
$$\frac{2 - \frac{\log{\left(x \right)}^{2}}{4}}{x^{\frac{3}{2}}}$$
The third derivative [src]
                   2   
     log(x)   3*log (x)
-3 - ------ + ---------
       2          8    
-----------------------
           5/2         
          x            
$$\frac{\frac{3 \log{\left(x \right)}^{2}}{8} - \frac{\log{\left(x \right)}}{2} - 3}{x^{\frac{5}{2}}}$$