Detail solution
-
Apply the product rule:
; to find :
-
Apply the power rule: goes to
; to find :
-
Let .
-
Apply the power rule: goes to
-
Then, apply the chain rule. Multiply by :
-
The derivative of is .
The result of the chain rule is:
The result is:
Now simplify:
The answer is:
The first derivative
[src]
2
log (x) 2*log(x)
------- + --------
___ ___
2*\/ x \/ x
$$\frac{\log{\left(x \right)}^{2}}{2 \sqrt{x}} + \frac{2 \log{\left(x \right)}}{\sqrt{x}}$$
The second derivative
[src]
2
log (x)
2 - -------
4
-----------
3/2
x
$$\frac{2 - \frac{\log{\left(x \right)}^{2}}{4}}{x^{\frac{3}{2}}}$$
The third derivative
[src]
2
log(x) 3*log (x)
-3 - ------ + ---------
2 8
-----------------------
5/2
x
$$\frac{\frac{3 \log{\left(x \right)}^{2}}{8} - \frac{\log{\left(x \right)}}{2} - 3}{x^{\frac{5}{2}}}$$