Mister Exam

Other calculators

Derivative of (sqrt(x^3)-sqrt(x))lnx

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
/   ____        \       
|  /  3      ___|       
\\/  x   - \/ x /*log(x)
$$\left(- \sqrt{x} + \sqrt{x^{3}}\right) \log{\left(x \right)}$$
(sqrt(x^3) - sqrt(x))*log(x)
Detail solution
  1. Apply the product rule:

    ; to find :

    1. Differentiate term by term:

      1. Let .

      2. Apply the power rule: goes to

      3. Then, apply the chain rule. Multiply by :

        1. Apply the power rule: goes to

        The result of the chain rule is:

      4. The derivative of a constant times a function is the constant times the derivative of the function.

        1. Apply the power rule: goes to

        So, the result is:

      The result is:

    ; to find :

    1. The derivative of is .

    The result is:

  2. Now simplify:


The answer is:

The graph
The first derivative [src]
   ____           /                 ____\       
  /  3      ___   |                /  3 |       
\/  x   - \/ x    |     1      3*\/  x  |       
--------------- + |- ------- + ---------|*log(x)
       x          |      ___      2*x   |       
                  \  2*\/ x             /       
$$\left(\frac{3 \sqrt{x^{3}}}{2 x} - \frac{1}{2 \sqrt{x}}\right) \log{\left(x \right)} + \frac{- \sqrt{x} + \sqrt{x^{3}}}{x}$$
The second derivative [src]
               ____                     /            ____\       
              /  3                      |           /  3 |       
    1     3*\/  x                       | 1     3*\/  x  |       
- ----- + ---------              ____   |---- + ---------|*log(x)
    ___       x         ___     /  3    | 3/2        2   |       
  \/ x                \/ x  - \/  x     \x          x    /       
------------------- + --------------- + -------------------------
         x                    2                     4            
                             x                                   
$$\frac{\left(\frac{3 \sqrt{x^{3}}}{x^{2}} + \frac{1}{x^{\frac{3}{2}}}\right) \log{\left(x \right)}}{4} + \frac{\frac{3 \sqrt{x^{3}}}{x} - \frac{1}{\sqrt{x}}}{x} + \frac{\sqrt{x} - \sqrt{x^{3}}}{x^{2}}$$
The third derivative [src]
                          /               ____\     /          ____\            /            ____\
                          |              /  3 |     |         /  3 |            |           /  3 |
                          |    1     3*\/  x  |     | 1     \/  x  |            | 1     3*\/  x  |
    /           ____\   3*|- ----- + ---------|   3*|---- + -------|*log(x)   3*|---- + ---------|
    |  ___     /  3 |     |    ___       x    |     | 5/2       3  |            | 3/2        2   |
  2*\\/ x  - \/  x  /     \  \/ x             /     \x         x   /            \x          x    /
- ------------------- - ----------------------- - ------------------------- + --------------------
            3                        2                        8                       4*x         
           x                      2*x                                                             
$$- \frac{3 \left(\frac{\sqrt{x^{3}}}{x^{3}} + \frac{1}{x^{\frac{5}{2}}}\right) \log{\left(x \right)}}{8} + \frac{3 \left(\frac{3 \sqrt{x^{3}}}{x^{2}} + \frac{1}{x^{\frac{3}{2}}}\right)}{4 x} - \frac{3 \left(\frac{3 \sqrt{x^{3}}}{x} - \frac{1}{\sqrt{x}}\right)}{2 x^{2}} - \frac{2 \left(\sqrt{x} - \sqrt{x^{3}}\right)}{x^{3}}$$