__________ / 3 \/ x - 2*x *cos(x)
sqrt(x^3 - 2*x)*cos(x)
Apply the product rule:
; to find :
Let .
Apply the power rule: goes to
Then, apply the chain rule. Multiply by :
Differentiate term by term:
Apply the power rule: goes to
The derivative of a constant times a function is the constant times the derivative of the function.
Apply the power rule: goes to
So, the result is:
The result is:
The result of the chain rule is:
; to find :
The derivative of cosine is negative sine:
The result is:
Now simplify:
The answer is:
/ 2\
| 3*x |
__________ |-1 + ----|*cos(x)
/ 3 \ 2 /
- \/ x - 2*x *sin(x) + ------------------
__________
/ 3
\/ x - 2*x
/ 2\
| / 2\ |
| \-2 + 3*x / |
|12*x - ------------|*cos(x)
_____________ / 2\ | / 2\ |
/ / 2\ \-2 + 3*x /*sin(x) \ x*\-2 + x / /
- \/ x*\-2 + x / *cos(x) - ------------------ + ----------------------------
_____________ _____________
/ / 2\ / / 2\
\/ x*\-2 + x / 4*\/ x*\-2 + x /
/ 3\
/ 2\ | / 2\ / 2\ |
| / 2\ | | 12*\-2 + 3*x / \-2 + 3*x / |
| \-2 + 3*x / | 3*|8 - -------------- + -------------|*cos(x)
3*|12*x - ------------|*sin(x) | 2 2|
_____________ / 2\ | / 2\ | | -2 + x 2 / 2\ |
/ / 2\ 3*\-2 + 3*x /*cos(x) \ x*\-2 + x / / \ x *\-2 + x / /
\/ x*\-2 + x / *sin(x) - -------------------- - ------------------------------ + ---------------------------------------------
_____________ _____________ _____________
/ / 2\ / / 2\ / / 2\
2*\/ x*\-2 + x / 4*\/ x*\-2 + x / 8*\/ x*\-2 + x /