Mister Exam

Other calculators

Derivative of ((sqrt(x))+3)/(x+2)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  ___    
\/ x  + 3
---------
  x + 2  
$$\frac{\sqrt{x} + 3}{x + 2}$$
(sqrt(x) + 3)/(x + 2)
Detail solution
  1. Apply the quotient rule, which is:

    and .

    To find :

    1. Differentiate term by term:

      1. The derivative of the constant is zero.

      2. Apply the power rule: goes to

      The result is:

    To find :

    1. Differentiate term by term:

      1. The derivative of the constant is zero.

      2. Apply the power rule: goes to

      The result is:

    Now plug in to the quotient rule:

  2. Now simplify:


The answer is:

The graph
The first derivative [src]
                    ___    
       1          \/ x  + 3
--------------- - ---------
    ___                   2
2*\/ x *(x + 2)    (x + 2) 
$$- \frac{\sqrt{x} + 3}{\left(x + 2\right)^{2}} + \frac{1}{2 \sqrt{x} \left(x + 2\right)}$$
The second derivative [src]
                             /      ___\
    1            1         2*\3 + \/ x /
- ------ - ------------- + -------------
     3/2     ___                     2  
  4*x      \/ x *(2 + x)      (2 + x)   
----------------------------------------
                 2 + x                  
$$\frac{\frac{2 \left(\sqrt{x} + 3\right)}{\left(x + 2\right)^{2}} - \frac{1}{\sqrt{x} \left(x + 2\right)} - \frac{1}{4 x^{\frac{3}{2}}}}{x + 2}$$
The third derivative [src]
  /                            /      ___\                 \
  |  1            1          2*\3 + \/ x /         1       |
3*|------ + -------------- - ------------- + --------------|
  |   5/2     ___        2             3        3/2        |
  \8*x      \/ x *(2 + x)       (2 + x)      4*x   *(2 + x)/
------------------------------------------------------------
                           2 + x                            
$$\frac{3 \left(- \frac{2 \left(\sqrt{x} + 3\right)}{\left(x + 2\right)^{3}} + \frac{1}{\sqrt{x} \left(x + 2\right)^{2}} + \frac{1}{4 x^{\frac{3}{2}} \left(x + 2\right)} + \frac{1}{8 x^{\frac{5}{2}}}\right)}{x + 2}$$