_______ / x + 1 / ----- \/ x - 1
sqrt((x + 1)/(x - 1))
Let .
Apply the power rule: goes to
Then, apply the chain rule. Multiply by :
Apply the quotient rule, which is:
and .
To find :
Differentiate term by term:
The derivative of the constant is zero.
Apply the power rule: goes to
The result is:
To find :
Differentiate term by term:
The derivative of the constant is zero.
Apply the power rule: goes to
The result is:
Now plug in to the quotient rule:
The result of the chain rule is:
Now simplify:
The answer is:
_______ / x + 1 / 1 x + 1 \ / ----- *(x - 1)*|--------- - ----------| \/ x - 1 |2*(x - 1) 2| \ 2*(x - 1) / -------------------------------------------- x + 1
/ 1 + x \ ________ | 1 - ------| / 1 + x / 1 + x \ | 2 2 -1 + x| / ------ *|1 - ------|*|- ----- - ------ + ----------| \/ -1 + x \ -1 + x/ \ 1 + x -1 + x 1 + x / --------------------------------------------------------- 4*(1 + x)
/ 2 \ | / 1 + x \ / 1 + x \ / 1 + x \ | ________ | 3*|1 - ------| |1 - ------| 3*|1 - ------| | / 1 + x / 1 + x \ | 1 1 1 \ -1 + x/ \ -1 + x/ \ -1 + x/ | / ------ *|1 - ------|*|-------- + --------- + ---------------- - -------------- + ------------- - ------------------| \/ -1 + x \ -1 + x/ | 2 2 (1 + x)*(-1 + x) 2 2 4*(1 + x)*(-1 + x)| \(1 + x) (-1 + x) 4*(1 + x) 8*(1 + x) / ------------------------------------------------------------------------------------------------------------------------- 1 + x