Mister Exam

Derivative of sqrtx*logexp

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  ___    / x\
\/ x *log\e /
$$\sqrt{x} \log{\left(e^{x} \right)}$$
d /  ___    / x\\
--\\/ x *log\e //
dx               
$$\frac{d}{d x} \sqrt{x} \log{\left(e^{x} \right)}$$
Detail solution
  1. Apply the product rule:

    ; to find :

    1. Apply the power rule: goes to

    ; to find :

    1. Let .

    2. The derivative of is .

    3. Then, apply the chain rule. Multiply by :

      1. The derivative of is itself.

      The result of the chain rule is:

    The result is:

  2. Now simplify:


The answer is:

The graph
The first derivative [src]
           / x\
  ___   log\e /
\/ x  + -------
            ___
        2*\/ x 
$$\sqrt{x} + \frac{\log{\left(e^{x} \right)}}{2 \sqrt{x}}$$
The second derivative [src]
       / x\
    log\e /
1 - -------
      4*x  
-----------
     ___   
   \/ x    
$$\frac{1 - \frac{\log{\left(e^{x} \right)}}{4 x}}{\sqrt{x}}$$
The third derivative [src]
  /        / x\\
  |     log\e /|
3*|-2 + -------|
  \        x   /
----------------
        3/2     
     8*x        
$$\frac{3 \left(-2 + \frac{\log{\left(e^{x} \right)}}{x}\right)}{8 x^{\frac{3}{2}}}$$
The graph
Derivative of sqrtx*logexp