Mister Exam

Derivative of sqrt(x)*ln(x)+x

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  ___           
\/ x *log(x) + x
xlog(x)+x\sqrt{x} \log{\left(x \right)} + x
sqrt(x)*log(x) + x
Detail solution
  1. Differentiate xlog(x)+x\sqrt{x} \log{\left(x \right)} + x term by term:

    1. Apply the product rule:

      ddxf(x)g(x)=f(x)ddxg(x)+g(x)ddxf(x)\frac{d}{d x} f{\left(x \right)} g{\left(x \right)} = f{\left(x \right)} \frac{d}{d x} g{\left(x \right)} + g{\left(x \right)} \frac{d}{d x} f{\left(x \right)}

      f(x)=xf{\left(x \right)} = \sqrt{x}; to find ddxf(x)\frac{d}{d x} f{\left(x \right)}:

      1. Apply the power rule: x\sqrt{x} goes to 12x\frac{1}{2 \sqrt{x}}

      g(x)=log(x)g{\left(x \right)} = \log{\left(x \right)}; to find ddxg(x)\frac{d}{d x} g{\left(x \right)}:

      1. The derivative of log(x)\log{\left(x \right)} is 1x\frac{1}{x}.

      The result is: log(x)2x+1x\frac{\log{\left(x \right)}}{2 \sqrt{x}} + \frac{1}{\sqrt{x}}

    2. Apply the power rule: xx goes to 11

    The result is: 1+log(x)2x+1x1 + \frac{\log{\left(x \right)}}{2 \sqrt{x}} + \frac{1}{\sqrt{x}}

  2. Now simplify:

    x+log(x)2+1x\frac{\sqrt{x} + \frac{\log{\left(x \right)}}{2} + 1}{\sqrt{x}}


The answer is:

x+log(x)2+1x\frac{\sqrt{x} + \frac{\log{\left(x \right)}}{2} + 1}{\sqrt{x}}

The graph
02468-8-6-4-2-1010-2020
The first derivative [src]
      1      log(x)
1 + ----- + -------
      ___       ___
    \/ x    2*\/ x 
1+log(x)2x+1x1 + \frac{\log{\left(x \right)}}{2 \sqrt{x}} + \frac{1}{\sqrt{x}}
The second derivative [src]
-log(x) 
--------
    3/2 
 4*x    
log(x)4x32- \frac{\log{\left(x \right)}}{4 x^{\frac{3}{2}}}
The third derivative [src]
-2 + 3*log(x)
-------------
       5/2   
    8*x      
3log(x)28x52\frac{3 \log{\left(x \right)} - 2}{8 x^{\frac{5}{2}}}