Mister Exam

Other calculators

Derivative of sqrt(x)*ln(1-x^2)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  ___    /     2\
\/ x *log\1 - x /
$$\sqrt{x} \log{\left(1 - x^{2} \right)}$$
sqrt(x)*log(1 - x^2)
Detail solution
  1. Apply the product rule:

    ; to find :

    1. Apply the power rule: goes to

    ; to find :

    1. Let .

    2. The derivative of is .

    3. Then, apply the chain rule. Multiply by :

      1. Differentiate term by term:

        1. The derivative of the constant is zero.

        2. The derivative of a constant times a function is the constant times the derivative of the function.

          1. Apply the power rule: goes to

          So, the result is:

        The result is:

      The result of the chain rule is:

    The result is:

  2. Now simplify:


The answer is:

The graph
The first derivative [src]
   /     2\      3/2
log\1 - x /   2*x   
----------- - ------
      ___          2
  2*\/ x      1 - x 
$$- \frac{2 x^{\frac{3}{2}}}{1 - x^{2}} + \frac{\log{\left(1 - x^{2} \right)}}{2 \sqrt{x}}$$
The second derivative [src]
                                /          2 \
                            ___ |       2*x  |
                        2*\/ x *|-1 + -------|
    ___      /     2\           |           2|
2*\/ x    log\1 - x /           \     -1 + x /
------- - ----------- - ----------------------
      2         3/2                  2        
-1 + x       4*x               -1 + x         
$$- \frac{2 \sqrt{x} \left(\frac{2 x^{2}}{x^{2} - 1} - 1\right)}{x^{2} - 1} + \frac{2 \sqrt{x}}{x^{2} - 1} - \frac{\log{\left(1 - x^{2} \right)}}{4 x^{\frac{3}{2}}}$$
The third derivative [src]
                                        /          2 \          /          2 \
                                        |       2*x  |      3/2 |       4*x  |
                                      3*|-1 + -------|   4*x   *|-3 + -------|
                           /     2\     |           2|          |           2|
          3           3*log\1 - x /     \     -1 + x /          \     -1 + x /
- ----------------- + ------------- - ---------------- + ---------------------
      ___ /      2\          5/2        ___ /      2\                   2     
  2*\/ x *\-1 + x /       8*x         \/ x *\-1 + x /          /      2\      
                                                               \-1 + x /      
$$\frac{4 x^{\frac{3}{2}} \left(\frac{4 x^{2}}{x^{2} - 1} - 3\right)}{\left(x^{2} - 1\right)^{2}} - \frac{3 \left(\frac{2 x^{2}}{x^{2} - 1} - 1\right)}{\sqrt{x} \left(x^{2} - 1\right)} - \frac{3}{2 \sqrt{x} \left(x^{2} - 1\right)} + \frac{3 \log{\left(1 - x^{2} \right)}}{8 x^{\frac{5}{2}}}$$