___ / 2\ \/ x *log\1 - x /
sqrt(x)*log(1 - x^2)
Apply the product rule:
; to find :
Apply the power rule: goes to
; to find :
Let .
The derivative of is .
Then, apply the chain rule. Multiply by :
Differentiate term by term:
The derivative of the constant is zero.
The derivative of a constant times a function is the constant times the derivative of the function.
Apply the power rule: goes to
So, the result is:
The result is:
The result of the chain rule is:
The result is:
Now simplify:
The answer is:
/ 2\ 3/2 log\1 - x / 2*x ----------- - ------ ___ 2 2*\/ x 1 - x
/ 2 \ ___ | 2*x | 2*\/ x *|-1 + -------| ___ / 2\ | 2| 2*\/ x log\1 - x / \ -1 + x / ------- - ----------- - ---------------------- 2 3/2 2 -1 + x 4*x -1 + x
/ 2 \ / 2 \ | 2*x | 3/2 | 4*x | 3*|-1 + -------| 4*x *|-3 + -------| / 2\ | 2| | 2| 3 3*log\1 - x / \ -1 + x / \ -1 + x / - ----------------- + ------------- - ---------------- + --------------------- ___ / 2\ 5/2 ___ / 2\ 2 2*\/ x *\-1 + x / 8*x \/ x *\-1 + x / / 2\ \-1 + x /