Mister Exam

Other calculators

Derivative of sqrt(x)*(8*x-5)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  ___          
\/ x *(8*x - 5)
$$\sqrt{x} \left(8 x - 5\right)$$
sqrt(x)*(8*x - 5)
Detail solution
  1. Apply the product rule:

    ; to find :

    1. Apply the power rule: goes to

    ; to find :

    1. Differentiate term by term:

      1. The derivative of a constant times a function is the constant times the derivative of the function.

        1. Apply the power rule: goes to

        So, the result is:

      2. The derivative of the constant is zero.

      The result is:

    The result is:

  2. Now simplify:


The answer is:

The graph
The first derivative [src]
    ___   8*x - 5
8*\/ x  + -------
              ___
          2*\/ x 
$$8 \sqrt{x} + \frac{8 x - 5}{2 \sqrt{x}}$$
The second derivative [src]
    -5 + 8*x
8 - --------
      4*x   
------------
     ___    
   \/ x     
$$\frac{8 - \frac{8 x - 5}{4 x}}{\sqrt{x}}$$
The third derivative [src]
  /     -5 + 8*x\
3*|-2 + --------|
  \       8*x   /
-----------------
        3/2      
       x         
$$\frac{3 \left(-2 + \frac{8 x - 5}{8 x}\right)}{x^{\frac{3}{2}}}$$