Mister Exam

Derivative of sqrt(x)*(cosx)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  ___       
\/ x *cos(x)
$$\sqrt{x} \cos{\left(x \right)}$$
sqrt(x)*cos(x)
Detail solution
  1. Apply the product rule:

    ; to find :

    1. Apply the power rule: goes to

    ; to find :

    1. The derivative of cosine is negative sine:

    The result is:

  2. Now simplify:


The answer is:

The graph
The first derivative [src]
 cos(x)     ___       
------- - \/ x *sin(x)
    ___               
2*\/ x                
$$- \sqrt{x} \sin{\left(x \right)} + \frac{\cos{\left(x \right)}}{2 \sqrt{x}}$$
The second derivative [src]
 /  ___          sin(x)   cos(x)\
-|\/ x *cos(x) + ------ + ------|
 |                 ___       3/2|
 \               \/ x     4*x   /
$$- (\sqrt{x} \cos{\left(x \right)} + \frac{\sin{\left(x \right)}}{\sqrt{x}} + \frac{\cos{\left(x \right)}}{4 x^{\frac{3}{2}}})$$
The third derivative [src]
  ___          3*cos(x)   3*sin(x)   3*cos(x)
\/ x *sin(x) - -------- + -------- + --------
                   ___        3/2        5/2 
               2*\/ x      4*x        8*x    
$$\sqrt{x} \sin{\left(x \right)} - \frac{3 \cos{\left(x \right)}}{2 \sqrt{x}} + \frac{3 \sin{\left(x \right)}}{4 x^{\frac{3}{2}}} + \frac{3 \cos{\left(x \right)}}{8 x^{\frac{5}{2}}}$$