Detail solution
-
Apply the product rule:
; to find :
-
Apply the power rule: goes to
; to find :
-
The derivative of cosine is negative sine:
The result is:
-
Now simplify:
The answer is:
The first derivative
[src]
cos(x) ___
------- - \/ x *sin(x)
___
2*\/ x
$$- \sqrt{x} \sin{\left(x \right)} + \frac{\cos{\left(x \right)}}{2 \sqrt{x}}$$
The second derivative
[src]
/ ___ sin(x) cos(x)\
-|\/ x *cos(x) + ------ + ------|
| ___ 3/2|
\ \/ x 4*x /
$$- (\sqrt{x} \cos{\left(x \right)} + \frac{\sin{\left(x \right)}}{\sqrt{x}} + \frac{\cos{\left(x \right)}}{4 x^{\frac{3}{2}}})$$
The third derivative
[src]
___ 3*cos(x) 3*sin(x) 3*cos(x)
\/ x *sin(x) - -------- + -------- + --------
___ 3/2 5/2
2*\/ x 4*x 8*x
$$\sqrt{x} \sin{\left(x \right)} - \frac{3 \cos{\left(x \right)}}{2 \sqrt{x}} + \frac{3 \sin{\left(x \right)}}{4 x^{\frac{3}{2}}} + \frac{3 \cos{\left(x \right)}}{8 x^{\frac{5}{2}}}$$