Mister Exam

Other calculators


sqrtx*(3x^2-4x)

Derivative of sqrtx*(3x^2-4x)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  ___ /   2      \
\/ x *\3*x  - 4*x/
$$\sqrt{x} \left(3 x^{2} - 4 x\right)$$
d /  ___ /   2      \\
--\\/ x *\3*x  - 4*x//
dx                    
$$\frac{d}{d x} \sqrt{x} \left(3 x^{2} - 4 x\right)$$
Detail solution
  1. Apply the product rule:

    ; to find :

    1. Apply the power rule: goes to

    ; to find :

    1. Differentiate term by term:

      1. The derivative of a constant times a function is the constant times the derivative of the function.

        1. Apply the power rule: goes to

        So, the result is:

      2. The derivative of a constant times a function is the constant times the derivative of the function.

        1. The derivative of a constant times a function is the constant times the derivative of the function.

          1. Apply the power rule: goes to

          So, the result is:

        So, the result is:

      The result is:

    The result is:

  2. Now simplify:


The answer is:

The graph
The first derivative [src]
                      2      
  ___              3*x  - 4*x
\/ x *(-4 + 6*x) + ----------
                        ___  
                    2*\/ x   
$$\sqrt{x} \left(6 x - 4\right) + \frac{3 x^{2} - 4 x}{2 \sqrt{x}}$$
The second derivative [src]
    ___   2*(-2 + 3*x)   -4 + 3*x
6*\/ x  + ------------ - --------
               ___           ___ 
             \/ x        4*\/ x  
$$6 \sqrt{x} - \frac{3 x - 4}{4 \sqrt{x}} + \frac{2 \cdot \left(3 x - 2\right)}{\sqrt{x}}$$
The third derivative [src]
  /    -2 + 3*x   -4 + 3*x\
3*|3 - -------- + --------|
  \      2*x        8*x   /
---------------------------
             ___           
           \/ x            
$$\frac{3 \cdot \left(3 + \frac{3 x - 4}{8 x} - \frac{3 x - 2}{2 x}\right)}{\sqrt{x}}$$
The graph
Derivative of sqrtx*(3x^2-4x)