Mister Exam

Derivative of (sqrt(x)-1)/(x)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  ___    
\/ x  - 1
---------
    x    
$$\frac{\sqrt{x} - 1}{x}$$
(sqrt(x) - 1)/x
Detail solution
  1. Apply the quotient rule, which is:

    and .

    To find :

    1. Differentiate term by term:

      1. The derivative of the constant is zero.

      2. Apply the power rule: goes to

      The result is:

    To find :

    1. Apply the power rule: goes to

    Now plug in to the quotient rule:

  2. Now simplify:


The answer is:

The graph
The first derivative [src]
           ___    
  1      \/ x  - 1
------ - ---------
   3/2        2   
2*x          x    
$$- \frac{\sqrt{x} - 1}{x^{2}} + \frac{1}{2 x^{\frac{3}{2}}}$$
The second derivative [src]
             /       ___\
    5      2*\-1 + \/ x /
- ------ + --------------
     5/2          3      
  4*x            x       
$$\frac{2 \left(\sqrt{x} - 1\right)}{x^{3}} - \frac{5}{4 x^{\frac{5}{2}}}$$
The third derivative [src]
  /           /       ___\\
  |  11     2*\-1 + \/ x /|
3*|------ - --------------|
  |   7/2          4      |
  \8*x            x       /
$$3 \left(- \frac{2 \left(\sqrt{x} - 1\right)}{x^{4}} + \frac{11}{8 x^{\frac{7}{2}}}\right)$$