Apply the quotient rule, which is:
and .
To find :
Apply the power rule: goes to
To find :
Differentiate term by term:
The derivative of the constant is zero.
The derivative of a constant times a function is the constant times the derivative of the function.
Apply the power rule: goes to
So, the result is:
The result is:
Now plug in to the quotient rule:
Now simplify:
The answer is:
___ 1 2*\/ x ----------------- - ---------- ___ 2 2*\/ x *(2*x - 1) (2*x - 1)
___ 1 2 8*\/ x - ------ - ---------------- + ----------- 3/2 ___ 2 4*x \/ x *(-1 + 2*x) (-1 + 2*x) ----------------------------------------- -1 + 2*x
/ ___ \ | 1 1 16*\/ x 4 | 3*|------ + ----------------- - ----------- + -----------------| | 5/2 3/2 3 ___ 2| \8*x 2*x *(-1 + 2*x) (-1 + 2*x) \/ x *(-1 + 2*x) / ---------------------------------------------------------------- -1 + 2*x