Mister Exam

Other calculators

Derivative of sqrt(x)/(2*x-1)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
   ___ 
 \/ x  
-------
2*x - 1
$$\frac{\sqrt{x}}{2 x - 1}$$
sqrt(x)/(2*x - 1)
Detail solution
  1. Apply the quotient rule, which is:

    and .

    To find :

    1. Apply the power rule: goes to

    To find :

    1. Differentiate term by term:

      1. The derivative of the constant is zero.

      2. The derivative of a constant times a function is the constant times the derivative of the function.

        1. Apply the power rule: goes to

        So, the result is:

      The result is:

    Now plug in to the quotient rule:

  2. Now simplify:


The answer is:

The graph
The first derivative [src]
                         ___  
        1            2*\/ x   
----------------- - ----------
    ___                      2
2*\/ x *(2*x - 1)   (2*x - 1) 
$$- \frac{2 \sqrt{x}}{\left(2 x - 1\right)^{2}} + \frac{1}{2 \sqrt{x} \left(2 x - 1\right)}$$
The second derivative [src]
                                    ___  
    1             2             8*\/ x   
- ------ - ---------------- + -----------
     3/2     ___                        2
  4*x      \/ x *(-1 + 2*x)   (-1 + 2*x) 
-----------------------------------------
                 -1 + 2*x                
$$\frac{\frac{8 \sqrt{x}}{\left(2 x - 1\right)^{2}} - \frac{2}{\sqrt{x} \left(2 x - 1\right)} - \frac{1}{4 x^{\frac{3}{2}}}}{2 x - 1}$$
The third derivative [src]
  /                                    ___                     \
  |  1              1             16*\/ x             4        |
3*|------ + ----------------- - ----------- + -----------------|
  |   5/2      3/2                        3     ___           2|
  \8*x      2*x   *(-1 + 2*x)   (-1 + 2*x)    \/ x *(-1 + 2*x) /
----------------------------------------------------------------
                            -1 + 2*x                            
$$\frac{3 \left(- \frac{16 \sqrt{x}}{\left(2 x - 1\right)^{3}} + \frac{4}{\sqrt{x} \left(2 x - 1\right)^{2}} + \frac{1}{2 x^{\frac{3}{2}} \left(2 x - 1\right)} + \frac{1}{8 x^{\frac{5}{2}}}\right)}{2 x - 1}$$