Mister Exam

Other calculators


sqrt(2x-x^2)

Derivative of sqrt(2x-x^2)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
   __________
  /        2 
\/  2*x - x  
$$\sqrt{- x^{2} + 2 x}$$
  /   __________\
d |  /        2 |
--\\/  2*x - x  /
dx               
$$\frac{d}{d x} \sqrt{- x^{2} + 2 x}$$
Detail solution
  1. Let .

  2. Apply the power rule: goes to

  3. Then, apply the chain rule. Multiply by :

    1. Differentiate term by term:

      1. The derivative of a constant times a function is the constant times the derivative of the function.

        1. Apply the power rule: goes to

        So, the result is:

      2. The derivative of a constant times a function is the constant times the derivative of the function.

        1. Apply the power rule: goes to

        So, the result is:

      The result is:

    The result of the chain rule is:

  4. Now simplify:


The answer is:

The graph
The first derivative [src]
    1 - x    
-------------
   __________
  /        2 
\/  2*x - x  
$$\frac{1 - x}{\sqrt{- x^{2} + 2 x}}$$
The second derivative [src]
 /            2\ 
 |    (-1 + x) | 
-|1 + ---------| 
 \    x*(2 - x)/ 
-----------------
    ___________  
  \/ x*(2 - x)   
$$- \frac{1 + \frac{\left(x - 1\right)^{2}}{x \left(2 - x\right)}}{\sqrt{x \left(2 - x\right)}}$$
The third derivative [src]
   /            2\         
   |    (-1 + x) |         
-3*|1 + ---------|*(-1 + x)
   \    x*(2 - x)/         
---------------------------
                  3/2      
       (x*(2 - x))         
$$- \frac{3 \cdot \left(1 + \frac{\left(x - 1\right)^{2}}{x \left(2 - x\right)}\right) \left(x - 1\right)}{\left(x \left(2 - x\right)\right)^{\frac{3}{2}}}$$
The graph
Derivative of sqrt(2x-x^2)