Mister Exam

Other calculators

Derivative of sqrt(((2x-4)^2)+1)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
   ________________
  /          2     
\/  (2*x - 4)  + 1 
$$\sqrt{\left(2 x - 4\right)^{2} + 1}$$
sqrt((2*x - 4)^2 + 1)
Detail solution
  1. Let .

  2. Apply the power rule: goes to

  3. Then, apply the chain rule. Multiply by :

    1. Differentiate term by term:

      1. Let .

      2. Apply the power rule: goes to

      3. Then, apply the chain rule. Multiply by :

        1. Differentiate term by term:

          1. The derivative of a constant times a function is the constant times the derivative of the function.

            1. Apply the power rule: goes to

            So, the result is:

          2. The derivative of the constant is zero.

          The result is:

        The result of the chain rule is:

      4. The derivative of the constant is zero.

      The result is:

    The result of the chain rule is:

  4. Now simplify:


The answer is:

The graph
The first derivative [src]
      -8 + 4*x     
-------------------
   ________________
  /          2     
\/  (2*x - 4)  + 1 
$$\frac{4 x - 8}{\sqrt{\left(2 x - 4\right)^{2} + 1}}$$
The second derivative [src]
  /                2  \
  |      4*(-2 + x)   |
4*|1 - ---------------|
  |                  2|
  \    1 + 4*(-2 + x) /
-----------------------
     _________________ 
    /               2  
  \/  1 + 4*(-2 + x)   
$$\frac{4 \left(- \frac{4 \left(x - 2\right)^{2}}{4 \left(x - 2\right)^{2} + 1} + 1\right)}{\sqrt{4 \left(x - 2\right)^{2} + 1}}$$
The third derivative [src]
   /                 2  \         
   |       4*(-2 + x)   |         
48*|-1 + ---------------|*(-2 + x)
   |                   2|         
   \     1 + 4*(-2 + x) /         
----------------------------------
                        3/2       
       /              2\          
       \1 + 4*(-2 + x) /          
$$\frac{48 \left(x - 2\right) \left(\frac{4 \left(x - 2\right)^{2}}{4 \left(x - 2\right)^{2} + 1} - 1\right)}{\left(4 \left(x - 2\right)^{2} + 1\right)^{\frac{3}{2}}}$$