Mister Exam

Other calculators


(sqrt(2*x-3)-x)^4

Derivative of (sqrt(2*x-3)-x)^4

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
                 4
/  _________    \ 
\\/ 2*x - 3  - x/ 
(x+2x3)4\left(- x + \sqrt{2 x - 3}\right)^{4}
(sqrt(2*x - 3) - x)^4
Detail solution
  1. Let u=x+2x3u = - x + \sqrt{2 x - 3}.

  2. Apply the power rule: u4u^{4} goes to 4u34 u^{3}

  3. Then, apply the chain rule. Multiply by ddx(x+2x3)\frac{d}{d x} \left(- x + \sqrt{2 x - 3}\right):

    1. Differentiate x+2x3- x + \sqrt{2 x - 3} term by term:

      1. Let u=2x3u = 2 x - 3.

      2. Apply the power rule: u\sqrt{u} goes to 12u\frac{1}{2 \sqrt{u}}

      3. Then, apply the chain rule. Multiply by ddx(2x3)\frac{d}{d x} \left(2 x - 3\right):

        1. Differentiate 2x32 x - 3 term by term:

          1. The derivative of a constant times a function is the constant times the derivative of the function.

            1. Apply the power rule: xx goes to 11

            So, the result is: 22

          2. The derivative of the constant 3-3 is zero.

          The result is: 22

        The result of the chain rule is:

        12x3\frac{1}{\sqrt{2 x - 3}}

      4. The derivative of a constant times a function is the constant times the derivative of the function.

        1. Apply the power rule: xx goes to 11

        So, the result is: 1-1

      The result is: 1+12x3-1 + \frac{1}{\sqrt{2 x - 3}}

    The result of the chain rule is:

    4(1+12x3)(x+2x3)34 \left(-1 + \frac{1}{\sqrt{2 x - 3}}\right) \left(- x + \sqrt{2 x - 3}\right)^{3}

  4. Now simplify:

    4(x2x3)3(2x31)2x3\frac{4 \left(x - \sqrt{2 x - 3}\right)^{3} \left(\sqrt{2 x - 3} - 1\right)}{\sqrt{2 x - 3}}


The answer is:

4(x2x3)3(2x31)2x3\frac{4 \left(x - \sqrt{2 x - 3}\right)^{3} \left(\sqrt{2 x - 3} - 1\right)}{\sqrt{2 x - 3}}

The graph
02468-8-6-4-2-10102000-1000
The first derivative [src]
                 3                   
/  _________    \  /          4     \
\\/ 2*x - 3  - x/ *|-4 + -----------|
                   |       _________|
                   \     \/ 2*x - 3 /
(4+42x3)(x+2x3)3\left(-4 + \frac{4}{\sqrt{2 x - 3}}\right) \left(- x + \sqrt{2 x - 3}\right)^{3}
The second derivative [src]
                    2 /                    2         __________\
  /      __________\  |  /         1      \    x - \/ -3 + 2*x |
4*\x - \/ -3 + 2*x / *|3*|1 - ------------|  + ----------------|
                      |  |      __________|               3/2  |
                      \  \    \/ -3 + 2*x /     (-3 + 2*x)     /
4(x2x3)2(3(112x3)2+x2x3(2x3)32)4 \left(x - \sqrt{2 x - 3}\right)^{2} \left(3 \left(1 - \frac{1}{\sqrt{2 x - 3}}\right)^{2} + \frac{x - \sqrt{2 x - 3}}{\left(2 x - 3\right)^{\frac{3}{2}}}\right)
The third derivative [src]
                      /                                                /         1      \ /      __________\\
                      |                                          2   3*|1 - ------------|*\x - \/ -3 + 2*x /|
                      |                    3   /      __________\      |      __________|                   |
   /      __________\ |  /         1      \    \x - \/ -3 + 2*x /      \    \/ -3 + 2*x /                   |
12*\x - \/ -3 + 2*x /*|2*|1 - ------------|  - ------------------- + ---------------------------------------|
                      |  |      __________|                 5/2                             3/2             |
                      \  \    \/ -3 + 2*x /       (-3 + 2*x)                      (-3 + 2*x)                /
12(x2x3)(2(112x3)3+3(112x3)(x2x3)(2x3)32(x2x3)2(2x3)52)12 \left(x - \sqrt{2 x - 3}\right) \left(2 \left(1 - \frac{1}{\sqrt{2 x - 3}}\right)^{3} + \frac{3 \left(1 - \frac{1}{\sqrt{2 x - 3}}\right) \left(x - \sqrt{2 x - 3}\right)}{\left(2 x - 3\right)^{\frac{3}{2}}} - \frac{\left(x - \sqrt{2 x - 3}\right)^{2}}{\left(2 x - 3\right)^{\frac{5}{2}}}\right)
The graph
Derivative of (sqrt(2*x-3)-x)^4