4 / _________ \ \\/ 2*x - 3 - x/
(sqrt(2*x - 3) - x)^4
Let .
Apply the power rule: goes to
Then, apply the chain rule. Multiply by :
Differentiate term by term:
Let .
Apply the power rule: goes to
Then, apply the chain rule. Multiply by :
Differentiate term by term:
The derivative of a constant times a function is the constant times the derivative of the function.
Apply the power rule: goes to
So, the result is:
The derivative of the constant is zero.
The result is:
The result of the chain rule is:
The derivative of a constant times a function is the constant times the derivative of the function.
Apply the power rule: goes to
So, the result is:
The result is:
The result of the chain rule is:
Now simplify:
The answer is:
3 / _________ \ / 4 \ \\/ 2*x - 3 - x/ *|-4 + -----------| | _________| \ \/ 2*x - 3 /
2 / 2 __________\ / __________\ | / 1 \ x - \/ -3 + 2*x | 4*\x - \/ -3 + 2*x / *|3*|1 - ------------| + ----------------| | | __________| 3/2 | \ \ \/ -3 + 2*x / (-3 + 2*x) /
/ / 1 \ / __________\\ | 2 3*|1 - ------------|*\x - \/ -3 + 2*x /| | 3 / __________\ | __________| | / __________\ | / 1 \ \x - \/ -3 + 2*x / \ \/ -3 + 2*x / | 12*\x - \/ -3 + 2*x /*|2*|1 - ------------| - ------------------- + ---------------------------------------| | | __________| 5/2 3/2 | \ \ \/ -3 + 2*x / (-3 + 2*x) (-3 + 2*x) /