sqrt(2-x^2)/(x-6)
________ / 2 \/ 2 - x ----------- x - 6
/ ________\ | / 2 | d |\/ 2 - x | --|-----------| dx\ x - 6 /
Apply the quotient rule, which is:
and .
To find :
Let .
Apply the power rule: goes to
Then, apply the chain rule. Multiply by :
Differentiate term by term:
The derivative of the constant is zero.
The derivative of a constant times a function is the constant times the derivative of the function.
Apply the power rule: goes to
So, the result is:
The result is:
The result of the chain rule is:
To find :
Differentiate term by term:
The derivative of the constant is zero.
Apply the power rule: goes to
The result is:
Now plug in to the quotient rule:
Now simplify:
The answer is:
________
/ 2
\/ 2 - x x
- ----------- - -------------------
2 ________
(x - 6) / 2
\/ 2 - x *(x - 6)
2
x
-1 + ------- ________
2 / 2
-2 + x 2*\/ 2 - x 2*x
------------ + ------------- + --------------------
________ 2 ________
/ 2 (-6 + x) / 2
\/ 2 - x (-6 + x)*\/ 2 - x
---------------------------------------------------
-6 + x
/ / 2 \ 2 \
| | x | x |
| ________ x*|-1 + -------| -1 + ------- |
| / 2 | 2| 2 |
| 2*\/ 2 - x \ -2 + x / -2 + x 2*x |
3*|- ------------- + ---------------- - -------------------- - ---------------------|
| 3 3/2 ________ ________|
| (-6 + x) / 2\ / 2 2 / 2 |
\ \2 - x / (-6 + x)*\/ 2 - x (-6 + x) *\/ 2 - x /
-------------------------------------------------------------------------------------
-6 + x