Mister Exam

Other calculators


sqrt(2-x^2)/(x-6)

You entered:

sqrt(2-x^2)/(x-6)

What you mean?

Derivative of sqrt(2-x^2)/(x-6)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
   ________
  /      2 
\/  2 - x  
-----------
   x - 6   
$$\frac{\sqrt{- x^{2} + 2}}{x - 6}$$
  /   ________\
  |  /      2 |
d |\/  2 - x  |
--|-----------|
dx\   x - 6   /
$$\frac{d}{d x} \frac{\sqrt{- x^{2} + 2}}{x - 6}$$
Detail solution
  1. Apply the quotient rule, which is:

    and .

    To find :

    1. Let .

    2. Apply the power rule: goes to

    3. Then, apply the chain rule. Multiply by :

      1. Differentiate term by term:

        1. The derivative of the constant is zero.

        2. The derivative of a constant times a function is the constant times the derivative of the function.

          1. Apply the power rule: goes to

          So, the result is:

        The result is:

      The result of the chain rule is:

    To find :

    1. Differentiate term by term:

      1. The derivative of the constant is zero.

      2. Apply the power rule: goes to

      The result is:

    Now plug in to the quotient rule:

  2. Now simplify:


The answer is:

The graph
The first derivative [src]
     ________                      
    /      2                       
  \/  2 - x              x         
- ----------- - -------------------
           2       ________        
    (x - 6)       /      2         
                \/  2 - x  *(x - 6)
$$- \frac{x}{\sqrt{- x^{2} + 2} \left(x - 6\right)} - \frac{\sqrt{- x^{2} + 2}}{\left(x - 6\right)^{2}}$$
The second derivative [src]
         2                                         
        x                                          
-1 + -------        ________                       
           2       /      2                        
     -2 + x    2*\/  2 - x             2*x         
------------ + ------------- + --------------------
   ________              2                 ________
  /      2       (-6 + x)                 /      2 
\/  2 - x                      (-6 + x)*\/  2 - x  
---------------------------------------------------
                       -6 + x                      
$$\frac{\frac{\frac{x^{2}}{x^{2} - 2} - 1}{\sqrt{- x^{2} + 2}} + \frac{2 x}{\sqrt{- x^{2} + 2} \left(x - 6\right)} + \frac{2 \sqrt{- x^{2} + 2}}{\left(x - 6\right)^{2}}}{x - 6}$$
The third derivative [src]
  /                    /         2  \                2                              \
  |                    |        x   |               x                               |
  |       ________   x*|-1 + -------|       -1 + -------                            |
  |      /      2      |           2|                  2                            |
  |  2*\/  2 - x       \     -2 + x /            -2 + x                 2*x         |
3*|- ------------- + ---------------- - -------------------- - ---------------------|
  |            3               3/2                  ________                ________|
  |    (-6 + x)        /     2\                    /      2            2   /      2 |
  \                    \2 - x /         (-6 + x)*\/  2 - x     (-6 + x) *\/  2 - x  /
-------------------------------------------------------------------------------------
                                        -6 + x                                       
$$\frac{3 \left(\frac{x \left(\frac{x^{2}}{x^{2} - 2} - 1\right)}{\left(- x^{2} + 2\right)^{\frac{3}{2}}} - \frac{\frac{x^{2}}{x^{2} - 2} - 1}{\sqrt{- x^{2} + 2} \left(x - 6\right)} - \frac{2 x}{\sqrt{- x^{2} + 2} \left(x - 6\right)^{2}} - \frac{2 \sqrt{- x^{2} + 2}}{\left(x - 6\right)^{3}}\right)}{x - 6}$$
The graph
Derivative of sqrt(2-x^2)/(x-6)