Mister Exam

Other calculators

Derivative of sqrt(2-3x^2+5x)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
   ________________
  /        2       
\/  2 - 3*x  + 5*x 
$$\sqrt{5 x + \left(2 - 3 x^{2}\right)}$$
sqrt(2 - 3*x^2 + 5*x)
Detail solution
  1. Let .

  2. Apply the power rule: goes to

  3. Then, apply the chain rule. Multiply by :

    1. Differentiate term by term:

      1. Differentiate term by term:

        1. The derivative of the constant is zero.

        2. The derivative of a constant times a function is the constant times the derivative of the function.

          1. Apply the power rule: goes to

          So, the result is:

        The result is:

      2. The derivative of a constant times a function is the constant times the derivative of the function.

        1. Apply the power rule: goes to

        So, the result is:

      The result is:

    The result of the chain rule is:

  4. Now simplify:


The answer is:

The graph
The first derivative [src]
     5/2 - 3*x     
-------------------
   ________________
  /        2       
\/  2 - 3*x  + 5*x 
$$\frac{\frac{5}{2} - 3 x}{\sqrt{5 x + \left(2 - 3 x^{2}\right)}}$$
The second derivative [src]
 /                 2    \ 
 |       (-5 + 6*x)     | 
-|3 + ------------------| 
 |      /       2      \| 
 \    4*\2 - 3*x  + 5*x// 
--------------------------
      ________________    
     /        2           
   \/  2 - 3*x  + 5*x     
$$- \frac{\frac{\left(6 x - 5\right)^{2}}{4 \left(- 3 x^{2} + 5 x + 2\right)} + 3}{\sqrt{- 3 x^{2} + 5 x + 2}}$$
The third derivative [src]
              /                2  \
              |      (-5 + 6*x)   |
-3*(-5 + 6*x)*|12 + --------------|
              |            2      |
              \     2 - 3*x  + 5*x/
-----------------------------------
                         3/2       
         /       2      \          
       8*\2 - 3*x  + 5*x/          
$$- \frac{3 \left(6 x - 5\right) \left(\frac{\left(6 x - 5\right)^{2}}{- 3 x^{2} + 5 x + 2} + 12\right)}{8 \left(- 3 x^{2} + 5 x + 2\right)^{\frac{3}{2}}}$$