Mister Exam

Other calculators

Derivative of sqrt(2-3x^2+5x)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
   ________________
  /        2       
\/  2 - 3*x  + 5*x 
5x+(23x2)\sqrt{5 x + \left(2 - 3 x^{2}\right)}
sqrt(2 - 3*x^2 + 5*x)
Detail solution
  1. Let u=5x+(23x2)u = 5 x + \left(2 - 3 x^{2}\right).

  2. Apply the power rule: u\sqrt{u} goes to 12u\frac{1}{2 \sqrt{u}}

  3. Then, apply the chain rule. Multiply by ddx(5x+(23x2))\frac{d}{d x} \left(5 x + \left(2 - 3 x^{2}\right)\right):

    1. Differentiate 5x+(23x2)5 x + \left(2 - 3 x^{2}\right) term by term:

      1. Differentiate 23x22 - 3 x^{2} term by term:

        1. The derivative of the constant 22 is zero.

        2. The derivative of a constant times a function is the constant times the derivative of the function.

          1. Apply the power rule: x2x^{2} goes to 2x2 x

          So, the result is: 6x- 6 x

        The result is: 6x- 6 x

      2. The derivative of a constant times a function is the constant times the derivative of the function.

        1. Apply the power rule: xx goes to 11

        So, the result is: 55

      The result is: 56x5 - 6 x

    The result of the chain rule is:

    56x25x+(23x2)\frac{5 - 6 x}{2 \sqrt{5 x + \left(2 - 3 x^{2}\right)}}

  4. Now simplify:

    56x23x2+5x+2\frac{5 - 6 x}{2 \sqrt{- 3 x^{2} + 5 x + 2}}


The answer is:

56x23x2+5x+2\frac{5 - 6 x}{2 \sqrt{- 3 x^{2} + 5 x + 2}}

The graph
02468-8-6-4-2-1010-1010
The first derivative [src]
     5/2 - 3*x     
-------------------
   ________________
  /        2       
\/  2 - 3*x  + 5*x 
523x5x+(23x2)\frac{\frac{5}{2} - 3 x}{\sqrt{5 x + \left(2 - 3 x^{2}\right)}}
The second derivative [src]
 /                 2    \ 
 |       (-5 + 6*x)     | 
-|3 + ------------------| 
 |      /       2      \| 
 \    4*\2 - 3*x  + 5*x// 
--------------------------
      ________________    
     /        2           
   \/  2 - 3*x  + 5*x     
(6x5)24(3x2+5x+2)+33x2+5x+2- \frac{\frac{\left(6 x - 5\right)^{2}}{4 \left(- 3 x^{2} + 5 x + 2\right)} + 3}{\sqrt{- 3 x^{2} + 5 x + 2}}
The third derivative [src]
              /                2  \
              |      (-5 + 6*x)   |
-3*(-5 + 6*x)*|12 + --------------|
              |            2      |
              \     2 - 3*x  + 5*x/
-----------------------------------
                         3/2       
         /       2      \          
       8*\2 - 3*x  + 5*x/          
3(6x5)((6x5)23x2+5x+2+12)8(3x2+5x+2)32- \frac{3 \left(6 x - 5\right) \left(\frac{\left(6 x - 5\right)^{2}}{- 3 x^{2} + 5 x + 2} + 12\right)}{8 \left(- 3 x^{2} + 5 x + 2\right)^{\frac{3}{2}}}