Mister Exam

Other calculators

Derivative of sqrt(2log(5x+1,2))

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  __________________
\/ 2*log(5*x + 6/5) 
$$\sqrt{2 \log{\left(5 x + \frac{6}{5} \right)}}$$
sqrt(2*log(5*x + 6/5))
Detail solution
  1. Let .

  2. Apply the power rule: goes to

  3. Then, apply the chain rule. Multiply by :

    1. The derivative of a constant times a function is the constant times the derivative of the function.

      1. Let .

      2. The derivative of is .

      3. Then, apply the chain rule. Multiply by :

        1. Differentiate term by term:

          1. The derivative of a constant times a function is the constant times the derivative of the function.

            1. Apply the power rule: goes to

            So, the result is:

          2. The derivative of the constant is zero.

          The result is:

        The result of the chain rule is:

      So, the result is:

    The result of the chain rule is:

  4. Now simplify:


The answer is:

The graph
The first derivative [src]
     ___   ________________ 
 5*\/ 2 *\/ log(5*x + 6/5)  
----------------------------
2*(5*x + 6/5)*log(5*x + 6/5)
$$\frac{5 \sqrt{2} \sqrt{\log{\left(5 x + \frac{6}{5} \right)}}}{2 \left(5 x + \frac{6}{5}\right) \log{\left(5 x + \frac{6}{5} \right)}}$$
The second derivative [src]
       ___ /          1       \ 
-625*\/ 2 *|2 + --------------| 
           \    log(6/5 + 5*x)/ 
--------------------------------
            2   ________________
4*(6 + 25*x) *\/ log(6/5 + 5*x) 
$$- \frac{625 \sqrt{2} \left(2 + \frac{1}{\log{\left(5 x + \frac{6}{5} \right)}}\right)}{4 \left(25 x + 6\right)^{2} \sqrt{\log{\left(5 x + \frac{6}{5} \right)}}}$$
The third derivative [src]
        ___ /           3                   3        \
15625*\/ 2 *|1 + ---------------- + -----------------|
            |    4*log(6/5 + 5*x)        2           |
            \                       8*log (6/5 + 5*x)/
------------------------------------------------------
                      3   ________________            
            (6 + 25*x) *\/ log(6/5 + 5*x)             
$$\frac{15625 \sqrt{2} \left(1 + \frac{3}{4 \log{\left(5 x + \frac{6}{5} \right)}} + \frac{3}{8 \log{\left(5 x + \frac{6}{5} \right)}^{2}}\right)}{\left(25 x + 6\right)^{3} \sqrt{\log{\left(5 x + \frac{6}{5} \right)}}}$$